450 likes | 745 Views
Adaptive Grid Reverse-Time Migration. Yue Wang. Outline. Motivation and Objective Reverse Time Methodology Salt Dome Model Test Field Data Test Conclusions. Problem. Kirchhoff migration is not optimal for complex velocity model. Marmousi Model. 0. Depth (km). Low-velocity wedge. 3.
E N D
Adaptive Grid Reverse-Time Migration Yue Wang
Outline Motivation and Objective Reverse Time Methodology Salt Dome Model Test Field Data Test Conclusions
Problem Kirchhoff migration is not optimal for complex velocity model.
Marmousi Model 0 Depth (km) Low-velocity wedge 3 0 9 Distance (km)
Problem Kirchhoff migration Using first arrival time Difficulty in imaging
Problem Reverse-Time Migration RTM) Using multi-arrival time Image complex structure Expensive
Solution Variable grid size Variable time step Fast RTM
Objective Develop fast reverse time migration for land and marine multi-component data
Outline Motivation and Objective Reverse Time Methodology Salt Dome Model Test Field Data Test Conclusions
Reverse Time Operator A 2-4 staggered-grid FD solver Elastic wave equation
Variable Grid Size Low velocity High velocity Depth Distance
Variable Grid Size Fine grid (dx dz) Coarse grid (3dx 3dz) z
Variable Grid Size Fine grid Use wave equation to propagate waves Coarse grid
Variable Time Step coarse grid, fine time step Depth coarse grid, coarse time step Distance
dt dt dt 3 dt t Variable Time Step z
t Variable Time Step Fine time step Use wave equation to propagate waves Coarse time step z
Variable Time Step Falk et al. (1998, Geophys. Pros. ): 1. Non-staggered-grid FD 2. 2x time step change
Variable Time Step The new method : 1. Staggered-grid FD 2. 3x time step change
No artificial reflections Time t2 Amplitude Depth Numerical Results Time t1 Amplitude Depth Fine time step Coarse time step
Outline Motivation and Objective Reverse Time Methodology Salt Dome Model Test Field Data Test Conclusions
Salt Model 0 Depth (km) 2.7 0 4.5 Distance (km)
Velocity Profile P S 0 0 Depth (km) Depth (km) 2.7 2.7 1.5 4 0 2 Velocity (km/s) Velocity (km/s)
Velocity Profile P S Fine grid size Fine time step 0 Coarse grid size Coarse time step Depth (km) 2.7 1.5 4 0 2 Velocity (km/s) Velocity (km/s)
Horizontal Vertical Normal Stress 0 Shot Gather Time (s) 2 0.9 Distance (km) 3.6 0.9 Distance (km) 3.6 0.9 Distance (km) 3.6
0 Kirchhoff Migration Depth (km) 2.5 0.45 4.05 Distance (km)
0 Kirchhoff Migration Depth (km) 2.5 0.45 4.05 Distance (km)
0 Reverse Time Migration Depth (km) 2.5 0.45 4.05 Distance (km)
0 Reverse Time Migration Depth (km) 2.5 0.45 4.05 Distance (km)
Outline Motivation and Objective Reverse Time Methodology Salt Dome Model Test Field Data Test Conclusions
Radial Component Vertical Component Processed CSG 0 Time (s) 2.7 0 80 0 80 Trace Number Trace Number
Common Offset Gather(Vertical Component) 0 Depth (km) Signal/Noise Ratio High 4 0 27 Distance (km)
Common Offset Gather(Radial Component) 0 Depth (km) Signal/Noise Ratio Low 4 0 27 Distance (km)
Kirchhoff Migration(Vertical Component) 0 Depth (km) 4 0 27 Distance (km)
Kirchhoff Migration(Radial Component) 0 Depth (km) 4 0 27 Distance (km)
RTM 0 Depth (km) 4 0 27 Distance (km)
RTM KM Comparison 0 Depth (km) 4 0 27 0 27 Distance (km) Distance (km)
Outline Motivation and Objective Reverse Time Methodology Salt Dome Model Test Field Data Test Conclusions and Future Work
Conclusions Variable RTM 10 times faster than standard RTM Migrates Land and marine multi-component data Use primary and multiple reflections for imaging
Acknowledgement We are grateful to the 1999 sponsors of the UTAM consortium for the financial support
Radial Component Vertical Component Raw CSG 0 Time (s) 2.7 0 80 0 80 Trace Number Trace Number
Main Processing Flow Geometry assignment, datuming and so on Trace editing Surface wave attenuation, amplitude balancing P-velocity analysis S-velocity analysis Relative gain compensation, surface velocity estimation KM RTM
0 Shallow Velocity Depth (km) 0.4 0 27 Distance (km)
Future Work Apply the RTM scheme for data set with more complex structures.