1 / 25

Spectral Sensing Instruments – Remote Systems

Spectral Sensing Instruments – Remote Systems. Types of Remote Spectral Sensing Systems. The trade off: spectral vs radiometric vs spatial resolution. Profiling (e.g. Hylogger) vs imaging (HyChips, HyMap) Single element FTIR vs linear array vs area array

stefan
Download Presentation

Spectral Sensing Instruments – Remote Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spectral Sensing Instruments – Remote Systems

  2. Types of Remote Spectral Sensing Systems • The trade off: spectral vs radiometric vs spatial resolution. • Profiling (e.g. Hylogger) vs imaging (HyChips, HyMap) • Single element FTIR vs linear array vs area array • Whiskbroom (linear array, e.g. HyMap vs pushbroom (area array, e.g. ASTER) with higher signal/ratio UWA 3rd year

  3. Spectral Resolution Laboratory ARGUS /AVIRIS HYMAP ASTER Landsat TM Remote Sensing Systems – Spectral Resolution Spectral Coverage multispectral hyper- Choosing the right technology for your requirement! UWA 3rd year

  4. Atmospheric Windowsatmospheric transmittance: windows for remote sensing “Reflected Wavelengths” “Emitted Wavelengths” Atmospheric Transmission UWA 3rd year

  5. UWA 3rd year

  6. Airborne HyMap Spectral Configuration – 128 channels Module Spectral range Bandwidth Average spectral across module sampling interval VIS 0.45 – 0.89 um 15 – 16 nm 15 nm NIR 0.89 – 1.35 um 15 – 16 nm 15 nm SWIR1 1.40 – 1.80 um 15 – 16 nm 13 nm SWIR2 1.95 – 2.48 um 18 – 20 nm 17 nm • Australian sensor • Sydney-based • NASA-approved • high SNR • 126 bands • 0.4-2.5 m • 3-30 m pixel • 512 pixel swath • whiskbroom • fully calibrated www.hyvista.com UWA 3rd year

  7. Airborne HyMap white mica composition false colour • HyMap products delivered for the Qld Next Generation Mineral Mapping Project (excerpt) (http://www.em.csiro.au/NGMM/): • Natural colour basemap; • False colour basemap; • Green vegetation content; • Dry vegetation content; • Iron oxide content; • Hematite/Goethite ratio; • Ferrous iron content; • Kaolin content; • Kaolin crystallinity; • Al-smectite content; • Al-smectite composition; • White mica (par-ms-phengite) content; • White mica composition; • White mica crystallinity; • MgOH (cc/dol/chl/ep/amph) content; • MgOH (cc/dol/chl/ep/amph) composition; • Ferric iron and MgOH; • Ferrous iron and MgOH; • Chlorite-Epidote content; • Epidote content; • Opaques; • Hydrated silica 2190 nm 5km 2215 nm Block H Al-rich Al-poor UWA 3rd year

  8. Ferrous iron in MgOH minerals talc tremolite actinolite C3DMM Kalgoorlie Terrain 3D model Geoscience Australia’s pmd*CRC GOCAD model Eastern Goldfields UWA 3rd year

  9. SEBASSTIR • Airborne pushbroom • Liquid He cooled • Area array • 124 bands by 128 pixels • 7.6 and 13.5 mm • 50 nm FWHM • S:N >1000:1 • 3.5 m pixels (300 m swath) UWA 3rd year

  10. ARGUS “geophysics integrated spectrometry” • VISNIR: 370 - 1050 nm @ > 5nm res. => 136 ch : VINI..PS • SWIR: 900 - 2500 nm @ > 10nm res => 145 ch. : SWI..PS • TIR: 8 - 13 mm @ 30-60 nm res. => 120 ch. : TI..PS Magnetics Mineral Mapping Gamma Ray Spectroscopy UWA 3rd year

  11. NASA Technology Demonstrator Spaceborne hyperspectral VNIR-SWIR pushbroom imager, launched 2000 Area array 242 spectral bands by 256 pixels 400-2500 nm SWIR SNR <40:1 Data available from USGS HYPERION UWA 3rd year

  12. ASTER(Advanced Spaceborne Thermal Emission and Reflective Radiometer) • “Next generation” geology-tuned satellite sensor: • 14 spectral bands including 6 SWIR and 5 TIR geological bands (+ DEM) • 15 m VNIR • 30 m SWIR • 90 m TIR • Pushbroom for VNIR and SWIR • Whiskbroom for TIR • Significant Instrument/Data Issues • atmospheric correction, SWIR X-talk, TES www.asterweb.jpl.nasa.gov www.science.aster.ersdac.or.jp UWA 3rd year

  13. ASTER Geological Products from Band Combinations 3/2 : green vegetation 2/1, 4/1, 4/3 : iron oxide abundance 7/4, 5/4 : ferric/ferrous iron (in silicate/carbonate) ratio (5+7)/6 : Al-OH abundance (6+9)/(7+8) : Mg-OH + carbonate abundance 7/5,7/6,6/5 (RGB) or KWIK Residuals of 5,6,7or 7/5 with mask of (5+7)/6 : Al-OH type (Group 1: alunite, pyrophyllite, kaolinite, dickite); Group 2: muscovite; Group 3: phengite) 11/(10+12), 11/10, 13/12 and 13/10 : SiO2 abundance 13/14 : carbonate abundance 12/13 : “basic” minerals (garnet, CPX, epidote, chlorite) Use close spaced TIR bands to minimise T effect UWA 3rd year

  14. 100 km C-SatMAP ASTER processing : Mt Isa CSIRO’s C-SatMap software • ASTER L1B imagery • (crosstalk corrected) • 130 scenes • >1 terrabyte of data • cross-calibrated • reduced to reflectance • 12 geoscience products • 1 weeks processing • calibrated to HyMap reflectance ASTER False colour 321 Airborne & Satellite multispectral data coverage UWA 3rd year

  15. Processed geological product calibrated data raw data 100 km C-SatMAP ASTER processing : Mt Isa CSIRO’s C-SatMap software ASTER AlOH content : (B5 + B7) / B6 Linear histogram stretch : 2.06 (blue-low) to 2.4 (red-high) Al-clay content UWA 3rd year

  16. C-SatMAP ASTER processing : Mt Isa CSIRO’s C-SatMap software ASTER CSIRO Regolith product : R : B3/B2 G: B3/B7 B: B5/B7 Interpretation: Red : iron oxides Green : non mafic rocks Blue : clays UWA 3rd year

  17. C-SatMAP ASTER processing : Mt Isa CSIRO’s C-SatMap software ASTER Ferrous iron content within MgOH-carbonate : e.g. B5 / B4 - Ferrous iron content masked by areas interpreted as higher content of MgOH-carbonate (B6+B9) / (B7+B8) UWA 3rd year

  18. C-SatMAP ASTER processing : Mt Isa UWA 3rd year

  19. 50 km grid cell 500 m grid cell 5 km grid cell HyMap 4.5m pixel 500 m grid cell 50 m grid cell 5 km grid cell 500 m grid cell size 50 m grid cell size ASTER 30m pixel Image spatial resolution Mount Isa Inlier UWA 3rd year

  20. Published geology HyMap mica content ASTER AlOH content HyMap smectite abundance HyMap kaolin content Burstall granite granodiorite ? Wonga “biotite” granite composition content content 2215 nm 5%* 5%* 25%* 25%* 2185 nm Al-poor Al-rich Spectral Resolution –Relative mineral information content Mount Isa Inlier ASTER false colour HyMap false colour UWA 3rd year

  21. 200 km WA ASTER Map high low UWA 3rd year

  22. Future Satellite systems • MSMISat, South Africa (2010) • 200 bands, 400-2400 nm, 14 m pixel, 15 km swath • EnMap, Germany (2012) • ~200 bands, 420-2450 nm, 30m pixel, 30 km swath • Hyper, Japan (2013) • 220 bands, 400-2500 nm, 30m pixel, 60 km swath • HyspIRI, USA (2016) • 210 bands, 400-2500nm , 60 m pixel, 90 km swath www.isiswg.org UWA 3rd year

  23. Integrated analysis for mapping & exploration UWA 3rd year

  24. Software • ENVI (Environment for Visualising Images) (www.ittvis.com) • Hyperspectral images • Field spectra • Neil Pendock Suite • ASTER and hyperspectral images • CSIRO/HyVista Suite • ASTER and hyperspectral multi-scene processing • C-HyperMAP • C-SatMAP • IDL based • ERMapper (www.ermapper.com) • ASTER wizard UWA 3rd year

  25. Spectral In-House Training @ CET, UWA, Crawley -01.03.2010 – GP2, second floor, Rm111, 3rd year Geology Lab 9:00 Mineral Spectroscopy Theory : Wavelength coverage, EMR-matter interaction, vibrational spectroscopy; VNIR-SWIR-TIR mineralogy and mineral groups; mineral disorder/abundance/chemistry; spectral libraries Spectral Sensing Instruments – Proximal Systems:Spectral/radiometric/spatial resolution of field/lab systems; Hylogging 10:30 – 11:xx Lots of questions and Coffee 11:xx ASD &/or PIMA @ Lab and/or outside: The Spectral Geologist (TSG) Software introduction:Applications, Interpretation of afore scanned data 12:30 – 13:30 Lunch 13:30 Spectral Sensing Instruments – Remote Systems:Spectral/radiometric/spatial resolution of remote systems; satellite vs airborne; imaging vs line profiling; multispectral vs hyperspectral; VNIR vs SWIR vs TIR Alteration and Regolith Spectral-Mineral Models:Critical for successful use of spectral technology; Regolith mapping and Au (and Ni sulphide) exploration in the Kalgoorlie area; Mapping of ultramafic rocks; Alteration mapping using hyperspectral techniques. 15:00 – 15:xx Lots of questions & Afternoon Tea Theory & Proximal Systems ASD, PIMA, TSG Remote Systems Application to Mineral Systems UWA 3rd year

More Related