510 likes | 704 Views
SISTEMAS FOTOVOLTAICOS AUTÓNOMOS SFA. Índice. 1. Introducción 1.1. Sistema Fotovoltaico Autónomo SFA 1.2. Sistema Fotovoltaico Conectado Red SFCR 1.3. Analogías y Diferencias 1.4. Clasificación de los SFA. 3. Métodos de Dimensionado 3.1. Clasificación 3.2. Métodos Intuitivos
E N D
Índice 1. Introducción 1.1. Sistema Fotovoltaico Autónomo SFA 1.2. Sistema Fotovoltaico Conectado Red SFCR 1.3. Analogías y Diferencias 1.4. Clasificación de los SFA 3. Métodos de Dimensionado 3.1. Clasificación 3.2. Métodos Intuitivos 3.3. Métodos Analíticos 3.4. Métodos Numéricos 2. Definiciones 2.1. Capacidad del Generador CA 2.2. Capacidad del Sistema de Acumulación CS 2.3. Probabilidad de Pérdida de Carga 2.4. Curvas LLP 4. Dimensionado SFA
1.1. Sistema Fotovoltaico Autónomo SFA Sistema de Generación Regulador Carga (LCC) Consumo Sistema Acumulación SFA 1. Sólo Consumo en Continua
Carga (LCC) Carga (LCA) 1.1. Sistema Fotovoltaico Autónomo SFA Sistema de Generación Regulador Inversor Sistema Acumulación SFA 2. Consumo en Continua y Alterna
1.2. Sistema Fotovoltaico Conectado a Red SFCR Sistema de Generación Inversor Red Eléctrica Convencional SFCR
Sistema de Generación Regulador Inversor Sistema Acumulación 1.3. Analogías y Diferencias Analogías Diferencias Filosofía de Dimensionado SFA: Cubrir una demanda de consumo. Fiabilidad en el servicio. SFCR: Producción de Energía.
1.4. Clasificaciones de los SFA • Según Aplicación: • I. Electrificación Rural • II. Productos de Consumo • III. Aplicaciones Industriales • Según Usos Sistema Acumulación: • I. SFA sin Batería (PV-direct) • II. SFA con Batería • III. SFA Híbrido
Sistema de Generación Regulador Carga (LCC) Carga (LCA) Sistema Acumulación Inversor Sistema de Generación. Sistema de Acumulación (Baterías) Sistema de Regulación (Regulador) Sistema de Acondicionamiento de Potencia (Inversor) Otros Elementos (Estructuras, cableado, cargas,..)
2.1. Capacidad del Generador Normalizada al Consumo Relación entre los valores medios de la energía producida por el generador y la energía consumida por la carga. CA 2.2. Capacidad del Acumulador Normalizada al Consumo Máxima energía que puede extraerse de él dividida por el valor medio de la energía consumida por la carga CS
Déficit de energía Demanda de energía 2.3. Probabilidad de Pérdida de Carga El mérito de un SFA se mide en términos de la fiabilidad con que suministra energía eléctrica a la carga ¿Cómo se cuantifica la fiabilidad? Probabilidad de Pérdida de Carga (Loss of Load Probability LLP) Relación entre el déficit y demanda de energía, en la carga, durante el tiempo de funcionamiento de una instalación LLP =
2.4. Curvas LLP * Es posible encontrar diferentes pares de valores CA-CS que conducen al mismo valor de LLP * A mayor tamaño del sistema fotovoltaico mayor es su coste, mayor su fiabilidad y menor su LLP LLP (CS,CA) = (8, 0.61) Generador “Pequeño” Acumulador “Grande” CA (CS,CA) = (2, 1.1) Generador “Grande” Acumulador “Pequeño” CS
3.1. Clasificaciones de los Métodos de Dimensionado • Según Seguidor Punto de Máxima Potencia (MMP): • I. Con Seguidor MMP • II. Sin Seguidor MMP • Según Relación CA-CS-LLP: • I. Intuitivos • II. Numéricos • III. Analíticos
Según Relación CA, CS y LLP • * Métodos Intuitivos • No establecen relación entre CA, CS y LLP • Dimensionar: asegurar que el valor medio de la energía producida en el mes crítico o la energía producida en media anual, exceda a la consumida por la carga en un determinado factor de seguridad • * Métodos Numéricos • Relación entre CA, CS y LLP mediante simulación • * Métodos Analíticos • La forma de las líneas isofiables sugiere la posibilidad de • describirlas analíticamente • Presentan ecuaciones para describir las líneas isofiables
3.2. Métodos Intuitivos • No establecen relación entre CA, CS y LLP • Dimensionar: asegurar que el valor medio de la energía producida en el mes peor, exceda a la consumida por la carga en un factor de seguridad Por Ejemplo CA = FS1 CS = FS2 FS1 y FS2 factores arbitrarios En España FS1 / FS2 Aplicación Doméstica Telecomunicación Norte de España 1.2 / 5 1.3 / 8 Sur de España 1.1 / 4 1.2 / 6
3.3. Métodos Numéricos • Relación entre CA, CS y LLP mediante simulación Ventajas Son muy precisos Posibilitan refinamientos, incorporando modelos más completos para los diferentes elementos del sistema Permiten analizar aspectos adicionales al dimensionado Inconvenientes Necesitan de largas secuencias de radiación para la simulación Largo tiempo de cálculo
3.4. Métodos Analíticos • Relación entre CA, CS y LLP mediante ecuaciones Autores: Barra, Bartoli, Macomber, Gordon, Bucciarelli Método del Instituto de Energía Solar (IES) CA = f CS-u f = f1 + f2 log (LLP) u = exp(u1 + u2 LLP)
Pasos en el Dimensionado 1. Estimación del Consumo 2. Dimensionado Sistema de Generación (Generador Fotovoltaico) 3. Dimensionado Sistema de Acumulación (Baterías) 4. Dimensionado Sistema de Regulación (Regulador) 5. Dimensionado Sistema de Acondicionamiento de Corriente (Inversor) 6. Dimensionado del Cableado
Paso 1 Estimación del Consumo Definiciones Expresiones
Paso 1. Estimación del Consumo Definiciones Consumo Medio Diario Consumo eléctrico medio en un día cualquiera Símbolo Lmd Unidad Wh / día Consumo Medio Mensual Media mensual del anterior (Se considera igual al anterior) Consumo Total Anual Producto del Consumo Medio Diario por el número de días de consumo a lo largo de un año Símbolo LT Unidad Wh Consumo Medio Anual Media anual del anterior Si el consumo medio diario es constante a lo largo del año, coincidirá con éste Símbolo Lma Unidad Wh / día
LT = Lmd * Nd Lma = LT / Nd Paso 1. Estimación del Consumo Expresiones Consumo Medio Diario [Lmd (Wh /dia)] Consumo DC LmdDC = P(DC)i ·tdi Consumo ACLmdAC = P(AC)i ·tdi Lmd,DC : Energía consumida en DC (Wh/dia) LmdAC : Energía consumida en AC (Wh/dia) P(D,C)i : Potencia Nominal Elemento DC i (W) P(AC)i : Potencia Nominal Elemento AC i (W) tdi :Tiempo diario de uso (h) Lmd : Consumo Medio Diario(Wh/día) BAT : Rendimiento de la batería INV : Rendimiento del inversor CON : Factor Rendimiento Conductores Consumo Total Anual [LT (Wh)] Nd : Número días Consumo Medio Anual [Lma (Wh /dia)]
Dimensionado Generador Posición Óptima de Módulos Criterio 1. Criterio del Mes Crítico Criterio 2. Criterio Máxima Captación Energética Anual
Posición Óptima Módulos. Criterio Mes Crítico A. Orientación SUR ( = 0) B. Cálculo de Radiación Global sobre Superficie Inclinada (Gd (kWh/m2))
C. Consumo Medio Mensual (= Consumo Diario Medio Lmd) D. Relación Consumo / Radiación D1. Tomar el Máximo Cociente para cada ángulo (Mes Crítico) D2. Seleccionar de todos los máximos el Menor.
Posición Óptima Módulos. Criterio Máxima Captación Energética A. Orientación SUR ( = 0) B. Cálculo de Radiación Global sobre Superficie Inclinada (Gd (kWh/m2)) MEDIA ANUAL
Posición Óptima Módulos. Criterio Máxima Captación Energética C. Consumo Medio Anual (Lma) D. Relación Consumo / Radiación Seleccionar de todos los máximos el Menor.
Dimensionado Generador Cálculo del Número de Paneles Método 1. Funcionamiento Punto de Máxima Potencia Método 2. Amperios Hora Método 3. Curvas Isofiables
Método 1 Funcionamiento Punto Máxima Potencia Definiciones Expresiones
Generador FV trabaja en el punto de máxima potencia • Incluir un factor global de funcionamiento (PG o PR) Método 1. Funcionamiento en Máxima Potencia Definiciones NT :Número Total de módulos a instalar NS: Número de módulos en Serie NP: Número de módulos en Paralelo NT = NS x NP PMPP,TC: Potencia Pico del Módulo en STC (Wp/kW/m2) PG: Factor Global de Funcionamiento del Generador (0.65-0.9)
Método 1. Funcionamiento en Máxima Potencia Expresiones Lmdc : Consumo Medio Diario Mes Crítico (Wh /día) PMPP,STC : Potencia Pico del Módulo (Wp/kW/m2) Gd : Radiación global sup. inclinada (kWh /m2) PG : Factor Global de Funcionamiento NT = Lmdc / (PMPP·Gd·PG) NS = VBAT / VMPP,STC NS : Número de paneles serie VBAT : Tensión Nominal de la Batería (V) VMPP,STC : Tensión Nominal Módulo (max. potencia (V)) NP = NT / NS NP : Número de paneles paralelo
Método 2 Amperios-Hora Definiciones Expresiones
Generador FV NOtrabaja en el punto de máxima potencia • Generador FV trabaja punto de tensión impuesto por BAT • Corriente de trabajo aprox. corriente ISC Método 2. Amperios Hora Definiciones IMOD,MPP,STC: Corriente nominal del módulo (A) QAh: Consumo Medio Anual (Ah /día) IGFV,MPP,STC: Corriente total del generador FV (A) NT :Número Total de módulos a instalar NS: Número de módulos en Serie Np: Número de módulos en Paralelo
QAh = Lmd / VBAT NT = NP * NS Método 2. Amperios Hora Expresiones QAh : Consumo Medio Anual (Ah /día) Lmd: Consumo Medio Diario (Wh /día) VBAT: Tensión Nominal de la Batería (V) IGFV,MPP,STC : Corriente total del Generador FV (A) Gd: Radiación Solar Global inclinada (kWh / m2) IGFV,MPP,STC = QAh / Gd Np = IGFV,MPP,STC / IMOD,MPP,STC NS = VBAT / VMOD,MPP
Método 3 Curvas Isofiables Definiciones Expresiones
Método 3. Curvas Isofiables Definiciones Probabilidad de Pérdida de Carga (Loss of Load Probability LLP) Relación entre el déficit y demanda de energía, en la carga, durante el tiempo de funcionamiento de una instalación Capacidad del Generador Relación entre los valores medios de la energía producida por el generador y la energía consumida por la carga. Capacidad del Acumulador Máxima energía que puede extraerse de él dividida por el valor medio de la energía consumida por la carga
CA = IGEN,MPP· Gd /QAh CS = Cn· PDmax / Lma C´A = IGEN,MPP· Gd(0) /QAh Método 3. Curvas Isofiables Expresiones CA : Capacidad del generador (normalizada al consumo) QAh : Consumo Medio Anual (Ah /día) IGEN,MPP : Corriente total del Generador FV (A) Gd: Radiación Solar Global inclinada (kWh / m2) C’A : Capacidad del generador (normalizada al consumo en plano horizontal) QAh : Consumo Medio Anual (Ah /día) Im,GEN : Corriente total del Generador FV (A) Gd(0): Radiación Solar Global inclinada (kWh / m2) Cs : Capacidad del acumulador (normalizada al consumo) Cn : Capacidad del acumulador PDmax : Profundidad de descarga máxima
CA = (Gd /Gd(0)) ·(f·Cs-u) LLP = Déficit de energía f = f1 + f2 log (LLP) u = u1 + u2 · LLP Demanda de energía Método 3. Curvas Isofiables Expresiones LLP: Probabilidad de Pérdida de Carga
Paso 3 Dimensionado Sistema Acumulación * Definiciones * Expresiones
Paso 3. Dimensionado Sistema de Acumulación. Definiciones Profundidad de Descarga Máxima (PD,max) nivel máximo de descarga que se le permite a la batería Profundidad de Descarga Máxima Diaria (PD,max,d) nivel máximo de descarga que se le permite a la batería a lo largo de un ciclo diario Profundidad de Descarga Máxima Estacional (PD,max,e) nivel máximo de descarga que se le permite a la batería a lo largo de un ciclo estacional Días de Autonomía (N) número de días consecutivos que, en ausencia de sol, el sistema de acumulación es capaz de atender el consumo Capacidad de la Batería (Wh ó Ah) cantidad de energía que debe ser capaz de almacenar la batería Al igual que la Profundidad de Descarga Máxima existen dos capacidades: diaria y estacional
Cnd (Ah) = Cnd (Wh) / VBat Cne (Ah) = Cne (Wh) / VBat Paso 3. Dimensionado Sistema de Acumulación. Expresiones Cnd (Wh) = Lma / (PDmax,d·FCT) Cne (Wh) = (Lma · N) / PDmax,e·FCT) Cnd : Capacidad nominal de la Batería (Wh ó Ah) (Diaria) Cne : Capacidad nominal de la Batería (Wh ó Ah) (Diaria) Lma : Consumo Medio Anual (Wh) (o utilicar Lmd) N: Número de días de autonomía PDmax,d : Profundidad de Descarga Máxima Diaria PDmax,e : Profundidad de Descarga Máxima Estacional VBAT : Tensión Nominal de la Batería (V) FCT : Factor de Corrección por Temperatura
Paso 4 Dimensionado Sistema Regulación * Definiciones * Expresiones
Corriente Máxima Circulando por la Instalación Máxima corriente entre la que produce el generador y la que consume la carga Corriente Entrada Corriente procedente del Generador FV (Entra al Regulador) Corriente Salida Corriente consumida en la carga (Sale del Regulador) Paso 4. Dimensionado Sistema de Regulación. Definiciones
Ientrada = IGFV,SC = 1,25·IMOD,SC · Np IGFV;SC : Corriente de cortocircuito (SC) del Generador FV (A) IMOD,SC : Corriente de cortocircuito del módulo (A) Np : Número de ramas Paralelo del Generador Isalida = IC = 1,25·(PDC + PAC / INV) / VBAT IC : Corriente que consume la Carga (A) PDC : Potencia de las cargas en DC (W) PAC : Potencia de las cargas en AC (W) VBAT : Tensión nominal de la Batería Paso 4. Dimensionado Sistema de Regulación. Expresiones IR = máx (IGFV,SC,IC)
Paso 5. Dimensionado Sistema de Acondicionamiento de Potencia • Características de un convertidor DC - AC • Potencia Nominal (kW) • Tensión Nominal de Entrada (V) • Tensión Nominal de Salida (V) • Frecuencia de operación (Hz) • Rendimiento (%) Pinv 1,2 · PAC Paso 6. Dimensionado del cableado • Pérdidas óhmicas • Verificar las normas electrotécnicas de baja tensión • La pérdida de energía debe ser menor que una cantidad prefijada
Bibliografía • E. Lorenzo. • Electricidad Solar. • UPM. 1994. • Mariano Sidrach. • Sistemas fotovoltaicos autónomos: • métodos convencionales de dimensionamiento • Publicaciones CIEMAT. 2001. • M. Alonso. • Sistemas Fotovoltaicos. • SAPT Publicaciones Técnicas. 2001. • L. Hontoria, J. Aguilera, F.J. Muñoz • Dimensionado de Sistemas Fotovoltaicos Autónomos • Publicaciones CIEMAT. 2008.