1 / 28

Chia-Hung Lin Bing-Hong Liu Hong-Yen Yang Chih-Yen Kao Ming-Jer Tsai

Virtual-Coordinate-Based Delivery-Guaranteed Routing Protocol in Wireless Sensor Networks with Unidirectional Links. Chia-Hung Lin Bing-Hong Liu Hong-Yen Yang Chih-Yen Kao Ming-Jer Tsai National Tsing Hua University, Taiwan. Unidirectional Links. Sensors use different transmission ranges.

suzy
Download Presentation

Chia-Hung Lin Bing-Hong Liu Hong-Yen Yang Chih-Yen Kao Ming-Jer Tsai

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Virtual-Coordinate-Based Delivery-Guaranteed Routing Protocol in Wireless Sensor Networks with Unidirectional Links Chia-Hung Lin Bing-Hong Liu Hong-Yen Yang Chih-Yen Kao Ming-Jer Tsai National Tsing Hua University, Taiwan

  2. Unidirectional Links • Sensors use different transmission ranges • Transmission range is not a perfect circle

  3. Objective • A virtual coordinate assignment protocol and a routing protocol in WSNs • Address unidirectional links • Guarantee packet delivery • Do not require network topology feature

  4. Related Works

  5. ABVCap_Uni • Virtual Coordinate Assignment Protocol • Idea • Challenges • ABVCap_Uni Routing Protocol • Longitude Routing • Latitude Routing • Proactive Routing • Intra-ring Routing

  6. The Idea of Virtual Coordinate Assignment Protocol 23 33 12 22 7 7 10 26 2 11 30 30 6 35 3 5 29 17 27 28 31 32 20 14 19 34 25 21 1 8 13 18 4 36 15 9 24 Use ABVCap to assign virtual coordinate

  7. Challenge 1: Directed Graph → Undirected Graph c1 23 c2 c3 33 12 22 7 7 10 v1 26 2 11 30 30 v2 6 35 3 5 29 17 27 28 31 32 20 14 19 34 25 21 1 8 13 18 4 36 15 9 24 A cycle containing nodes in different components is organized as a ring

  8. The Idea of Virtual Coordinate Assignment Protocol (0,-5,0,0,0) (3,-3,0,0,0) (1,-4,0,0,0) (4,-3,0,0,0) (2,-3,0,0,0) (5,-4,0,0,0) (2,-2,0,0,0) (3,-2,0,0,0) (4,-2,0,0,0) (5,-3,0,0,0) Z’ 23 (0,-4,0,0,0) (1,-3,0,0,0) (5,-1,1,0,0) (0,-2,2,1,0) 12 22 (4,-1,0,0,0) (5,-2,0,0,0) 10 v1 (2,-1,1,0,0) (0,-3,0,0,0) (1,-2,0,0,0) 2 W 11 (0,-2,1,0,0) (5,-1,0,0,0) (3,-1,0,0,0) v2 6 35 3 (2,-1,0,0,0) 29 (5,0,0,0,0) 17 27 (1,-1,0,0,0) Y (0,-1,1,1,0) (0,-2,0,0,0) 31 (4,0,0,0,0) 32 20 14 (3,0,0,0,0) 19 (0,-1,1,1,0) 34 25 21 (5,1,0,0,0) (0,-1,0,0,0) (2,0,0,0,0) (3,1,0,0,0) (4,2,0,0,0) (5,3,0,0,0) 1 8 (0,0,1,1,0) 13 18 4 (4,1,0,0,0) (5,2,0,0,0) (2,1,0,0,0) (1,0,0,0,0) 36 15 X Z (0,0,0,0,0) (0,2,0,0,0) (1,2,0,0,0) 9 24 (0,1,0,0,0) (1,1,0,1,0) (0,3,0,0,0) (3,2,0,0,0) (1,3,0,0,0) (4,3,0,0,0) (2,2,0,0,0) (5,4,0,0,0)

  9. The Idea of Virtual Coordinate Assignment Protocol (0,-5,0,0,0) (3,-3,0,0,0) (1,-4,0,0,0) (4,-3,0,0,0) (2,-3,0,0,0) (5,-4,0,0,0) (2,-2,0,0,0) (3,-2,0,0,0) (4,-2,0,0,0) (5,-3,0,0,0) Z’ 23 (0,-4,0,0,0) (1,-3,0,0,0) (0,-2,2,1,0) (0,-2,1,0,0) 33 (0,-2,2,1,0) (5,-1,1,0,0) (0,-2,2,1,0) 12 22 (0,-2,1,0,0) (4,-1,0,0,0) (5,-2,0,0,0) 7 7 10 v1 26 (2,-1,1,0,0) (0,-3,0,0,0) (1,-2,0,0,0) 2 W 11 (0,-2,1,0,0) (5,-1,0,0,0) (3,-1,0,0,0) (0,-2,1,0,0) 30 30 v2 6 (0,-2,2,1,0) 35 (0,-2,1,0,0) 3 (2,-1,0,0,0) 5 29 (5,0,0,0,0) 17 27 (0,-2,1,0,0) (1,-1,0,0,0) Y (0,-1,1,1,0) 28 (0,-2,0,0,0) 31 (4,0,0,0,0) 32 20 14 (3,0,0,0,0) 19 (0,-1,1,1,0) 34 25 21 (5,1,0,0,0) (0,-1,0,0,0) (2,0,0,0,0) (3,1,0,0,0) (4,2,0,0,0) (5,3,0,0,0) 1 8 (0,0,1,1,0) 13 18 4 (4,1,0,0,0) (5,2,0,0,0) (2,1,0,0,0) (1,0,0,0,0) 36 15 X Z (0,0,0,0,0) (0,2,0,0,0) (1,2,0,0,0) 9 24 (0,1,0,0,0) (1,1,0,1,0) (0,3,0,0,0) (3,2,0,0,0) (1,3,0,0,0) (4,3,0,0,0) (2,2,0,0,0) (5,4,0,0,0)

  10. The Idea of ABVCap HopDist (X,Z’)=HopDist (Y,Z’) ±1 HopDist (Z,Z’) is maximum (0,-5,0,0,0) (3,-3,0,0,0) (1,-4,0,0,0) (4,-3,0,0,0) (2,-3,0,0,0) (5,-4,0,0,0) (longitude,latitude,ripple,up,down) Virtual coordinate is assigned based on the hop distance (2,-2,0,0,0) (3,-2,0,0,0) (4,-2,0,0,0) (5,-3,0,0,0) Z’ 23 (0,-4,0,0,0) (1,-3,0,0,0) (5,-1,1,0,0) (0,-2,2,1,0) 12 22 (4,-1,0,0,0) (5,-2,0,0,0) 0 10 v1 (2,-1,1,0,0) 2 (0,-3,0,0,0) (1,-2,0,0,0) 2 W 11 0 (0,-2,1,0,0) (5,-1,0,0,0) (3,-1,0,0,0) 1 v2 6 35 3 (2,-1,0,0,0) 29 (5,0,0,0,0) 17 27 (1,-1,0,0,0) Y (0,-1,1,1,0) (0,-2,0,0,0) 31 (4,0,0,0,0) 32 HopDist(X,Y) is maximum 20 14 (3,0,0,0,0) 19 (0,-1,1,1,0) 34 25 21 (5,1,0,0,0) (0,-1,0,0,0) (2,0,0,0,0) (3,1,0,0,0) (4,2,0,0,0) (5,3,0,0,0) 1 8 (0,0,1,1,0) 13 18 4 (4,1,0,0,0) (5,2,0,0,0) 4 (2,1,0,0,0) (1,0,0,0,0) 36 15 X Z (0,0,0,0,0) (0,2,0,0,0) (1,2,0,0,0) 9 24 HopDist(W,X) is maximum HopDist (X,Z)=HopDist (Y,Z) ±1 HopDist (W,Z) is maximum (0,1,0,0,0) (1,1,0,1,0) (0,3,0,0,0) (3,2,0,0,0) (1,3,0,0,0) (4,3,0,0,0) (2,2,0,0,0) (5,4,0,0,0)

  11. Challenge 2: Virtual Coordinate of the Node = Virtual Coordinate of the Extended Node Hop distance of a node has to equal the hop distance of the extended node Z’ 23 33 2 2 12 22 0 7 7 10 26 2 W 11 2 2 1 30 30 6 2 35 3 5 29 2 17 27 Y 28 31 2 32 20 14 19 34 25 21 1 8 13 18 4 36 15 X Z 9 24

  12. Challenge 3: A Node is Contained in Multiple Rings Z’ 23 (0,-2,1,0,0) (0,-2,1,0,0,5,1,3) 33 (0,-2,2,1,0) (0,-2,2,1,0,7,1,0) 12 22 7 7 10 26 2 W 11 30 30 6 35 3 5 29 17 27 Y 28 31 32 20 14 19 34 25 21 1 8 13 18 4 36 15 X Z 9 24

  13. ABVCap_Uni • Virtual Coordinate Assignment Protocol • Idea • Challenges • ABVCap_Uni Routing Protocol • Longitude Routing • Latitude Routing • Proactive Routing • Intra-ring Routing

  14. Longitude Routing … u v • If u.lon<d.lon, then u.rep=u.up • If u.lon>d.lon, then u.rep=u.dn (u.lon, u.lat) (v.lon=d.lon, v.lat) If u.lon<d.lon , we show (|ui.lon-d.lon|, ui.up)>(|ui+1.lon-d.lon|, ui+1.up) v … … u … u0 u1 u2 un (|v.lon-d.lon|, v.rep)=(0, v.rep) (|u1.lon-d.lon|, u1.rep) is minimal … …

  15. Assignment of up Coordinate if ui.up=0, |ui.lon-d.lon|>|ui+1.lon-d.lon| up: the minimal hop distance to a node having longitude larger by one minus one if ui.up≠0, ui.lon=ui+1.lon & ui.up>ui+1.up Z’ 23 12 22 10 v1 2 W 11 v2 6 35 3 29 17 27 Y (0,-1,1,1,0) (0,-2,0,0,0) 31 32 20 14 19 (0,-1,1,1,0) 34 (0,-1,1,1,0) (0,-1,0,0,0) 25 21 (0,-1,0,0,0) (2,0,0,0,0) (1,0,0,0,0) 1 8 (0,0,1,1,0) 13 18 4 (1,0,0,0,0) 36 15 X Z (0,0,0,0,0) 9 24

  16. Longitude Routing … u v (u.lon, u.lat) (v.lon=d.lon, v.lat) If u.lon<d.lon , we show (|ui.lon-d.lon|, ui.up)>(|ui+1.lon-d.lon|, ui+1.up) if ui.up=0, |ui.lon-d.lon|>|ui+1.lon-d.lon| if ui.up≠0, ui.lon=ui+1.lon & ui.up>ui+1.up

  17. Latitude Routing … v w (v.lon, v.lat) (w.lon=d.lon, w.lat=d.lat) We show (|vi.lat-d.lat|, vi.rp) > (|vi+1.lat-d.lat|, vi+1.rp) w … … v v1.lon=v0.lon & (|v1.lat-d.lat|, v1.rp) is minimal … v0 v1 vn v2 (|w.lat-d.lat|, w.rp) = (0, w.rp) … …

  18. Assignment of rp Coordinate if vi.rp=0, vi.lon=vi+1.lon & |vi.lat-d.lat|>|vi+1.lat-d.lat| rp: the minimal hop distance to the axis node it joined if vi.rp≠0, vi.lon=vi+1.lon , vi.lat=vi+1.lat & vi.rp>vi+1.rp Z’ 23 (0,-4,0,0,0) (1,-3,0,0,0) (0,-2,2,1,0) 12 22 10 v1 (2,-1,1,0,0) (0,-3,0,0,0) (1,-2,0,0,0) 2 W 11 (0,-2,1,0,0) v2 6 35 3 29 17 27 (1,-1,0,0,0) Y (0,-1,1,1,0) (0,-2,0,0,0) 31 32 20 14 19 34 (0,-2,1,0,0) (0,-2,0,0,0) 25 21 (0,-1,0,0,0) (0,-3,0,0,0) (1,-2,0,0,0) (0,-1,0,0,0) 1 8 13 18 4 (1,0,0,0,0) 36 15 X Z 9 24

  19. Latitude Routing … v w (v.lon, v.lat) (w.lon=d.lon, w.lat=d.lat) We show (|vi.lat-d.lat|, vi.rp) > (|vi+1.lat-d.lat|, vi+1.rp) if vi.rp=0, vi.lon=vi+1.lon & |vi.lat-d.lat|>|vi+1.lat-d.lat| if vi.rp≠0, vi.lon=vi+1.lon , vi.lat=vi+1.lat & vi.rp>vi+1.rp

  20. Proactive Routing … w d • Nodes having the same longitude and latitude coordinates exchange information • Subgraph induced by nodes having the same longitude and latitude coordinates is strongly connected (w.lon, w.lat) (d.lon, d.lat) → Packets can be forwarded from w to d

  21. Intra-Ring Routing (0,-5,0,0,0) (3,-3,0,0,0) (1,-4,0,0,0) (4,-3,0,0,0) (2,-3,0,0,0) (5,-4,0,0,0) longitude routing latitude routing (2,-2,0,0,0) (3,-2,0,0,0) (4,-2,0,0,0) (5,-3,0,0,0) proactive routing Z’ 23 (0,-4,0,0,0) (1,-3,0,0,0) intra-ring routing (5,-1,1,0,0) (0,-2,2,1,0) s 12 22 (4,-1,0,0,0) (5,-2,0,0,0) 10 v1 (2,-1,1,0,0) 2 11 (0,-3,0,0,0) (1,-2,0,0,0) W (0,-2,1,0,0) (5,-1,0,0,0) (3,-1,0,0,0) v2 6 35 3 (0,-5,0,0,0) (3,-3,0,0,0) (1,-4,0,0,0) (4,-3,0,0,0) (2,-3,0,0,0) (5,-4,0,0,0) (2,-1,0,0,0) (0,-2,1,0,0,5,1,3) 29 (5,0,0,0,0) (2,-2,0,0,0) (3,-2,0,0,0) (4,-2,0,0,0) (5,-3,0,0,0) 17 27 7 (1,-1,0,0,0) Z’ 23 26 Y (0,-4,0,0,0) (1,-3,0,0,0) (0,-1,1,1,0) 31 (0,-2,0,0,0) (4,0,0,0,0) (5,-1,1,0,0) 32 (4,-1,0,0,0) (5,-2,0,0,0) (0,-2,1,0,0,5,1,2) (0,-2,1,0,0,5,1,4) 20 12 22 (0,-2,2,1,0) 14 (3,0,0,0,0) (2,-1,1,0,0) 10 19 (0,-2,1,0,0) v1 30 (0,-1,1,1,0) (0,-3,0,0,0) (1,-2,0,0,0) 2 11 W 34 (5,-1,0,0,0) d (3,-1,0,0,0) 25 21 v2 6 (5,1,0,0,0) (0,-1,0,0,0) (2,-1,0,0,0) 35 3 (2,0,0,0,0) 5 29 (5,0,0,0,0) (3,1,0,0,0) (4,2,0,0,0) (5,3,0,0,0) 1 8 17 27 (0,-2,1,0,0,5,1,1) (0,0,1,1,0) (1,-1,0,0,0) Y 31 (0,-1,1,1,0) (0,-2,0,0,0) (4,0,0,0,0) (0,-2,1,0,0,5,1,0) 32 28 13 18 4 20 (4,1,0,0,0) (5,2,0,0,0) 14 (3,0,0,0,0) 19 (0,-1,1,1,0) 34 (2,1,0,0,0) 25 21 (0,-1,0,0,0) (5,1,0,0,0) (1,0,0,0,0) (2,0,0,0,0) 36 15 (0,0,1,1,0) (3,1,0,0,0) (4,2,0,0,0) (5,3,0,0,0) 1 8 X Z 13 18 4 (4,1,0,0,0) (5,2,0,0,0) (0,0,0,0,0) (0,2,0,0,0) (1,2,0,0,0) 9 24 Packets are forwarded to the successor (2,1,0,0,0) (1,0,0,0,0) 36 15 X (0,1,0,0,0) (1,1,0,1,0) (0,3,0,0,0) (3,2,0,0,0) (1,3,0,0,0) (4,3,0,0,0) (2,2,0,0,0) (5,4,0,0,0) (0,0,0,0,0) (0,2,0,0,0) (1,2,0,0,0) 9 24 Z (0,1,0,0,0) (1,1,0,1,0) (0,3,0,0,0) (3,2,0,0,0) (1,3,0,0,0) (4,3,0,0,0) (2,2,0,0,0) (5,4,0,0,0)

  22. Simulation Results • Assumption • Each sensor has a unique ID • Sensors are static • Network behaviors are not taken into consideration

  23. Environment Setup • Size of deployment region is fixed • Number of nodes • 300, 400, 500, 600, 700 • pb (percentage of bidirectional links) • 60%, 80%, 100%

  24. Compared Protocols • GLDR+VLM • Variant of GLDR • Has higher delivery rate than GLDR • Euclidean • Location-aware • Greedy routing • Detour is allowed

  25. Delivery Rate

  26. Routing Path Length

  27. Conclusion • ABVCap_Uni • Addresses unidirectional links • Guarantees packet delivery • Does not require network topology feature • Delivery Rate • ABVCap_Uni: 100% • GLDR+VLM: 69~87% • Euclidean: 68~99% • Routing Path Length • ABVCap_Uni/GLDR+VLM=1~1.12 • ABVCap_Uni/Euclidean=1.26~1.77 • Future Work • Wireless sensor networks with unreliable nodes and links

  28. Thank you! Q & A

More Related