1 / 9

Cho hàm số

Cho hàm số. Xét trên đoạn[0;2] Hãy tìm giá trị lớn nhất? Giá trị nhỏ nhất?. Ta có: f(2)=3 là giá trị lớn nhất vì. Và tồn tại x 0 =2sao cho f(x 0 )=3. Ta có f(1)=-1 là giá trị nhỏ nhất vì. Và tồn tại x 0 =1 sao cho f(x 0 )=-1. I. ĐỊNH NGHĨA:. Cho hàm số y=f(x) xác định trên tậpD

Download Presentation

Cho hàm số

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cho hàm số Xét trên đoạn[0;2] Hãy tìm giá trị lớn nhất? Giá trị nhỏ nhất? Ta có: f(2)=3 là giá trị lớn nhất vì Và tồn tại x0=2sao cho f(x0)=3 Ta có f(1)=-1 là giá trị nhỏ nhất vì Và tồn tại x0=1 sao cho f(x0)=-1

  2. I. ĐỊNH NGHĨA: Cho hàm số y=f(x) xác định trên tậpD a/ Số M được gọi là GTLN của hàm số y=f(x) trên tập D nếu f(x) M với mọi x thuộc D và tồn tại x0 thuộc D sao cho f(x0)=M Kí hiệu : b/ Số m được gọi là GTNN của hàm số y=f(x) trên tập D nếu f(x) M với mọi x thuộc D và tồn tại x0 thuộc D sao cho f(x0)=m Kí hiệu : VD1 : Tìm GTLN và GTNN của hàm số : y=-x2+2x Ghi nhớ: nếu trên khoảng K mà hs chỉ đạt 1 cực trị duy nhất thì cực trị đó chính là gtln hoặc gtnn của hs / K.

  3. II/ Cách tính GTLN và GTNN của hàm số trên một đoạn: Lập BBT và tìm gtln, nn của các hs: Hướng dẫn: - Nhận xét mối liên hệ giữa liên tục và sự tồn tại gtln,gt nn của hs trên đoạn?.

  4. II/ Cách tính GTLN và GTNN của hàm số trên một đoạn: 1.Định lí: Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó Xem ví dụ sgk tr 20. 2. Quy tắc tìm GTLN, GTNN của hàm số liên tục trên một đoạn : Cho hs Hãy chỉ ra giá trị lớn nhất, và giá trị nhỏ nhầt của hàm số trên đoạn [-2;1],[1;3], [-2;3] và nêu cách tính

  5. NHẬN XÉT: Nếu đạo hàm f’(x) giữ nguyên dấu trên đoạn [a;b] thì hàm số đồng biến hoặc nghịch biến trên cả đoạn . Do đó , f(x) đạt được GTLN,GTNN tại các đầu mút của đoạn Nếu chỉ có một hữu hạn các điểm xi (xi < xi+1)mà tại đó f’(x)=0 hoặc không xác định thì hàm số y=f(x) đơn điệu trên mỗi khoảng (xi ; xi+1) . Rõ ràng GTLN(GTNN) của hàm số trên đoạn [a;b] là số lớn nhất(số nhỏ nhất) trong các giá trị của hàm số tại hai đầu mút a, b và tại các điểm xi nói trên

  6. II/ Cách tính GTLN và GTNN của hàm số trên một đoạn: • QUY TẮC: • Tìm các điểm x1 , x2, …,xn trên đoạn [a;b] tại đó f’(x) bằng 0 hoặc không xác định • Tính f(a), f(x1),f(x2),…,f(xn), f(b) • Tìm số lớn nhất M và số nhỏ nhất m trong các số trên . Ta có

  7. II/ Cách tính GTLN và GTNN của hàm số trên một đoạn: QUY TẮC: 1. Tìm các điểm x1 , x2, …,xn trên đoạn [a;b] tại đó f’(x) bằng 0 hoặc không xác định 2.Tính f(a),f(x1),f(x2),…,f(xn), f(b) 3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên . Ta có VD: Tìm GTLN,GTNN của hàm số: Giải

  8. a x VD3: Cho một tấm nhôm hình vuông cạnh a. Người ta cắt ở bốn góc bốn hình vuông bằng nhau, rồi gập tấm nhôm lại như hình sau để được cái hộp không nắp. Tính cạnh của các hình vuộng bị cắt sau chothể tích của hộp là lớn nhất. Hướng dẫn: Gọi x là độ dài của hình vuông bị cắt Thể tích khối hộp là: Sao cho V(x0) có giá trị lớn nhất Tìm

  9. Gọi x là độ dài của hình vuông bị cắt Thể tích khối hộp là: Tìm Sao cho V(x0) có giá trị lớn nhất V’(x) = (a-2x)(a-6x) Trên khoảng Ta có BBT: Vậy: thì V(x) có giá trị lớn nhất:

More Related