290 likes | 434 Views
W kierunku fizyki umysłu. Włodzisław Duch Katedra Metod Komputerowych, Uniwersytet Mikołaja Kopernika. WWW: http://www.phys.uni.torun.pl/~duch. Fizyka, umysły i mózgi. Umysł - na jakim poziomie? Modele neuronowe. Gdzie ten umysł? Model statyczny. Kategoryzacja. M odel dynamiczny.
E N D
W kierunku fizyki umysłu. Włodzisław Duch Katedra Metod Komputerowych,Uniwersytet Mikołaja Kopernika. WWW: http://www.phys.uni.torun.pl/~duch
Fizyka, umysły i mózgi. Umysł - na jakim poziomie? Modele neuronowe. Gdzie ten umysł? Model statyczny. Kategoryzacja. Model dynamiczny. Fizyka umysłu. Plan
Fizyka, umysły i mózgi Wielkie wyzwanie fizyki: stworzenie modelu świata, który da się zrozumieć. Mózg to najbardziej skomplikowany obiekt w znanym Wszechświecie, umysł - najbardziej tajemniczy. Mózg jest zbyt ważny, by zostawić go neurofizjologom. Umysł - część tego, co robi mózg. „Ja” to jeden z wielu procesów realizowanych przez mój mózg. Zrozumieć działanie mózgu i umysłu: na jakim poziomie? czy fizyka wystarczy?
Poziomy opisu Neurofizyka i neuroinformatyka. Institute for Theoretical Neurophysics, Universität Bremen Cognitive computational neurosciences. Kognitywistyka, cognitive science - pismo. Od poziomu submolekularnego do całego mózgu: gdzie szukać umysłu? O zrozumienie umysłu: “... bardzo chcę, by się to nam nigdy nie udało”. (Ł. Turski, recenzja książki R. Penrose'a „Nowy umysł cesarza”, Post. Fiz. 1996) Czy nasza wiedza zmieni się na poziomie: * Podręcznika biologii w szkole? * Podręcznika uniwersyteckiego? * Specjalistycznych książek?
Od molekuł ... • Poziom molekularny 0.1-100 nm • Gałęzie nauki: genetyka, neurochemia, biologia komórki, fizyka molekularna. Oczekiwania: zrozumienie mechanizmów molekularnych działania kanałów jonowych, synaps, pamięci, uczenia się, powstawania sygnałów sensorycznych, farmakologia kwantowa. Modele fizyczne: brak; struktury półprzewodnikowe nie przypominają membran komórek i kanałów jonowych. Poziom kwantowy lub subkwantowy: Penrose i mikrotubule. Czas procesów poznawczych i neuronowych: 1-100 ms; czas dekoherencji procesów kwantowych w mikrotubulach 10-13 s (Tegmark, Science 2000). Świadomość i kolaps funkcji falowej w wyniku pomiaru (Wigner, Stapp): 40 lat bezpłodnych rozważań.
... przez neurony ... • Poziom neuronów 0.1-100 mm • Gałęzie nauki: neurobiologia, biofizyka, biochemia ... Oczekiwania: rozwój i śmierć neuronów, powstawanie potencjałów czynnościowych, przyczyny degeneracji, kompensacja, rodzaje neuronów, komunikacja ... Modele fizyczne: bardzo niedoskonałe, ale szczegółowe symulacje komputerowe umożliwiają badania in silico. Psychofizyka: do XX wieku ważna dziedzina, pracowali w niejIzaac Newton, Thomas Young, Herman von Helmholtz, Erwin Schrödinger (kolor); Ernst Mach (słuch, teoria pomiaru). Zamiana bodźców fizycznych na pobudzenia neuronów: wszystkie wrażenia i stany umysłowe są ciągami impulsów! F. Crick, Zdumiewająca hipoteza (1994; W-wa 1997).
... grupy neuronów ... • Kolumny kory 105 neuronów, 1 mm2, 80% połączeń wewnątrz. • Gałęzie nauki: neurofizjologia, biofizyka, teoria układów złożonych ... Oczekiwania: komunikacja miedzy neuronami, stany dynamiczne, analiza sygnałów, skojarzenia ... Modele fizyczne: bardzo niedoskonałe, uproszczone neurochipy pozwalają na pewne eksperymenty in silico. Pojedyncze neurony nie mają znaczenia: kolumny lub większe struktury muszą działać synchronicznie by wpłynąć na działanie/umysł. Opis teoretyczny: układ dynamiczny, synapsa = stopień swobody, rzędu 109- 1010 synaps w kolumnie. Powstają atraktory wszelkiego rodzaju. Co zmienia się w wyniku uczenia?
Reguła Hebba - uczenie „Kiedy akson komórki A jest dostatecznie blisko by pobudzić komórkę B i wielokrotnie w sposób trwały bierze udział w jej pobudzaniu, procesy wzrostu lub zmian metabolicznych zachodzą w obu komórkach tak, że sprawność neuronu A jako jednej z komórek pobudzających B, wzrasta.” D. O. Hebb, 1949 Na poziomie molekularnym: LTP - Long Term PotentiationLTD - Long Term Depression E. Kandel, Nobel 2000, za poznanie mechanizmów uczenia synaptycznego u ślimaków morskich.
Organizacja hierarchiczna Funkcje, przepływ informacji i kooperacja elementów na różnym poziomie. Neurony. Mikrokolumny ~ 110 neuronów. Kolumny kory (ok. 1 mm2), 105 neuronów = 103 mikrokolumn. Małe wyspecjalizowane struktury kory, wewnątrz zakrętów; całe mapy pobudzenia dochodzące z zewnątrz (przez komórki piramidowe).
Sukcesy Co można wyjaśnić za pomocą modeli neuronowych? Własności pamięci: adresowalność kontekstowa, zdolność do rozpoznawania uszkodzonych wzorców; czas nie zależy od liczby zapamiętanych wzorców; odporność na zniszczenie neuronów - brak lokalizacji. Pomyłki i skojarzenia fonologiczno - semantyczne. Przepełnienie pamięci prowadzi do chaotycznego zachowania. Różne rodzaje amnezji: wsteczną, następczą, całkowitą, trudności z uczeniem się. Zła praca hipokampa => przypominanie zdarzeń z odległej przeszłości. Halucynacje: fałszywe stany atraktorowe, poskładane z fragmentów. Wiele syndromów neuropsychologicznych: agnozje (zanik zdolności rozpoznawania), afazje (zaburzenia mowy), syndromy kognitywno-afektywne ... Psychiatria komputerowa - od 1995 roku.
Płyn neuronowy Na ile prawdziwa jest metafora mózg-komputer? Czy mózg liczy tak jak komputer czy jak zwijające się białko?Neuronowy płyn (Maass 2001): kolumny działają prosto! Dlaczego kolumna jest tak złożona? Tysiące mikroobwodów, dziesiątki neurotransmiterów/modulatorów, typów neuronów i synaps. Czy jej struktura jest genetycznie zaprogramowana? Jak kodowana jest informacja w sieci neuronów? „Płyn neuronowy”: przypadkowo połączone neurony w kolumnie, nie ma stanów ustalonych, impulsy zaburzają mikroobwody kolumn, nie ma kodowania, wewnętrznych reprezentacji. Wystarczy zdolność do odróżniania zaburzonych stanów! Taki system ma moc maszyny Turinga działającej w czasie rzeczywistym.
Gdzie ten umysł? Centralny Paradoks Kognitywistyki: jak ze zliczania impulsów przez neurony powstaje struktura, symbole, znaczenie, sens, wrażenia, emocje ... czyli świat umysłu? • Problemy filozoficzne: problem psychofizyczny, problem jakości wrażeń, świadomości, semantyki i syntaktyki, wiele eksperymentów myślowych ... • Problemy techniczne: • Jak pogodzić spójność umysłu z rozproszonym przetwarzaniem (binding problem)? • Jakie są warunki powstawania wrażeń? • Psycho-logos, logika psyche, ma bardzo niewiele praw ogólnych. • Brak dobrego modelu łączącego poziom neuro i psyche.
Czego brakuje? Poznanie wszystkich szczegółów na poziomie molekularnym lub pojedynczych neuronów nie wystarczy! Roger Shepard, Toward a universal law of generalization for psychological science (Science, Sept. 1987) “Nie potrzeba nam więcej danych, ale całkiem odmienne podejście do problemu.” Umysł jest częścią tego, co robi mózg. W jaki sposób analizować neurodynamikę tak, by odnieść ją do umysłu? Platon: widzimy cienie prawdziwej rzeczywistości na ścianie jaskini. Metaforycznie: umysł jest cieniem neurodynamiki.
Geometria umysłu R. Shepard (1994): prawa psychologiczne należy formułować w odpowiednich przestrzeniach. Makroskopowe własności są wynikiem oddziaływań na poziomie mikroskopowym. Opis ruchu - niezmienniczy w odpowiednich przestrzeniach Przestrzenie Euklidesowe - transformacja Galileusza.Pseudo-Euklidesowe (3+1) - transformacja Lorentza. Riemanna - transformacje w układzie przyspieszającym. Zachowanie, decyzje - rezultat neurodynamiki. Opis na poziomie neurodynamiki: zbyt trudny. Logika i symbole - zbyt uproszczona; opis geometryczny najlepszy? Jakie przestrzenie należy użyć by znaleźć ogólne prawa zachowania?Przestrzenie psychologiczne (K. Lewin 1938): obszar, w którym można umieścić elementy naszego doświadczenia, zdarzenia mentalne.
Prawa uniwersalne? „Siły, dynamika”: w P-przestrzeniach o minimalnej liczbie wymiarów. Odległości: malejące z wzrastającym podobieństwem obiektów. Uniwersalne prawo generalizacji bodźców zmysłowych: w odpowiedniej przestrzeni zależność jest eksponencjalna. D, odległość, obliczona procedurą MDS z postrzeganego podobieństwa; G(D), prawdopodobieństwo reakcji na wyuczony bodziec (D=0).
Struktura P-przestrzeni. P-przestrzenie: jakie wymiary? Jakie relacje do bodźców fizycznych?Informacje docierające z siatkówki do kory wzrokowej są szkicowe! Niezmienniczość postrzeganego koloru K(x,l) = I(l)S(x,l).Postrzeganie stałego koloru wymaga 6 receptorów, a są 3. Fizyka ruchu wyobrażanych obiektów: geometria kinematyczna. Trajektorie ruchu pozornego: linie geodezyjne obrotu i przesunięcia, a więc jest to ruch helikalny. Położenie sztywnegoobiektu:wyróżniony punkt + kąty, czyli rozmaitość 6-D, iloczyn półprosty grup E+=R3SO(3). Linie geodezyjne: rodzina1-par. podgrup, odpowiadających helikalnym trajektoriom geometrii kinematycznej. Częściowa symetriaobiektów upraszcza strukturę przestrzeni. Eksperymenty psychofizyczne pozwalają na określenie struktury tej przestrzeni. Interpretacja kształtów obiektów wymaga większej liczby wymiarów. Rozpoznawanie: ruch po geodezyjnej w stronę prototypu kształtuobiektu.
Wrażenia wzrokowe Teoria rozpoznawania obiektów, S. Edelman (1997) Wystarczy podobieństwo drugiego rzędu,nie więcej niż 300 wymiarów. Populacja kolumn kory działająca wspólnie (stacking).
Model statyczny Przestrzeń i czas: arena zdarzeń fizycznych (od czasów Newtona). P-przestrzenie: arena zdarzeń psychicznych, cień neurodynamiki. Cel: integracja informacji behawioralnej i neurodynamiki w jednym modelu, pomost pomiędzy psychologią i neurofizjologią, prostszy niż sieci neuronowe, ale sub-symboliczny, ciągły. Wersja statyczna: reakcje mózgu rzędu 1 sek, behawioralne (sensomotoryczne) lub kognitywne (oparte na pamięci). Zastosowania: rozpoznawanie obiektów, powstawanie kategorii w niskowymiarowych P-przestrzeniach, modele umysłu. • Jak? • Uprościć neurodynamikę, znaleźć niezmienniki (atraktory), rozkłady gęstości prawdopodobieństwa (PDF), przedstawić je w P-przestrzeniach. • Użyć danych behawioralnych do modelowania PDF.
Jak budować model? Od pomiarów aktywności neuronów do oceny siły bodźców. Analiza statystyczna (Bayes’owska) zapisów z wielu elektrod (Földiak). P(ri|s), i=1..N obliczone z zapisów wieloelektrodowych Prawdopodobieństwo posterioryczne P(s|r) = P(stymulacja | reakcja) Prawo Bayes’a: Analiza populacyjna: obiekty reprezentowane jako populacja aktywności kolumn. Reprezentacja słów - widoczna w obrazowaniu mózgu.
Uczenie się kategorii Kategoryzacja w psychologii - wiele teorii. Klasyczne eksperymenty: Shepardet. al (1961), Nosofsky et al. (1994) Problemy o wzrastającym stopniu złożoności, podział na kategorie C1, C2, 3 binarne własności: kolor (czarny/biały), rozmiar (mały/duży), kształt (,). Typ I : jedna własność określa kategorię. Typ II: dwie własności, XOR, np. Kat A: (czarny,duży) lub (biały,mały), kształt dowolny. Typ III-V: jedna własność + coraz więcej wyjątków. Typ VI: brak reguły, wyliczanka Trudności i szybkość uczenia się: Typ I < II < III ~ IV ~ V < VI
Przestrzeń cech Dynamika kanoniczna Co dzieje się w mózgu w czasie uczenia się definicji kategorii na przykładach? Złożona neurodynamika <=> najprostsza dynamika (kanoniczna). Dla wszystkich reguł logicznych można napisać odpowiednia równania. Dla problemów typu II, czyli XOR:
Wbrew większości Lista: choroby C lub R, symptomy PC, PR, I Choroba C kojarzy się z symptomami (PC, I), choroba R z (PR, I); C występuje 3 razy częściej niż R. (PC, I) => C, PC => C, I => C. Przewidywania wbrew większości (Medin, Edelson 1988). Chociaż PC + I + PR => C (60%)to PC + PR => R (60%) Baseny atraktorów neurodynamiki? PDF w przestrzeni {C, R, I, PC, PR}. Interpretacja psychologiczna (Kruschke 1996): PR ma znaczenie ponieważ jest to symptom wyróżniający, chociaż PC jest częstszy. Aktywacja PR + PC częściej prowadzi do odpowiedzi R ponieważ gradient w kierunku R jest większy.
Przestrzenie cech: 10-1000 parametrów (bodźce i zachowania); obiekty (PDF) i przejścia pomiędzy nimi. Mapy umysłu. Model dynamiczny Model statyczny - przydatny do interpretacji szybkich reakcji. Lokalne maksima PDF: aktywacje pamięci. Neurodynamika (poziom mikro): 1010- 1014 parametrów (synapsy); atraktory i przejścia pomiędzy nimi.
Stan umysłu: początkowo rozpoznawanie obiektu O1, stan ma pewien pęd i bezwładność (masę efektywną). Bodziec zewnętrzny skierowuje go do O2. Bodziec maskujący O3 bliski O2 blokuje aktywację O2; wrażenia związane z pierwszym bodźcem nie powstają. Torowanie obniża masę efektywną. Maskowanie Maskowanie: jeśli po ekspozycji pierwszego bodźca następuje szybko drugi, to wrażenia związane z tym pierwszym nie powstają.
Model umysłu • Model hierarchiczny: • wykrywanie cech - mapy topograficzne, kora sensoryczna • rozpoznawanie obiektów - pamięć długotrwała • pamięć robocza - bieżąca kontrola, przeżywana teraźniejszość.
Fizyka umysłu Język pozwalający na opis zdarzeń mentalnych redukowalny do zdarzeń neurofizjologicznych. Dynamika „stanu umysłu”, uproszczona dynamika opisująca ruch w przestrzeni cech. Obiekty - potencjały, spowalniające dynamikę. Stan umysłu: pęd, masa efektywna. Uproszczona dynamika powinna odtwarzać prawd. przejść pomiędzy stanami neurodynamiki mózgu, stanami behawioralnymi. Rozmyta dynamika symboliczna? Pierwotne obiekty umysłu: skonstruowane z danych sensorycznych i motorycznych. Wtórne: kategorie abstrakcyjne.
Przestrzenie umysłu jako arena zdarzeń mentalnych, np. Mind as motion, ed. R.F. Port, T. van Gelder (MIT Press 1995) Strumień myśli, zdanie jako trajektoria w przestrzeni umysłu, np: J. Elman, „Language as a dynamical system”. Lingwistyka: problemy analizy semantycznej rozwiązać można za pomocą „przestrzeni konceptualnych” (concept spaces). Psychologia emocji: 8 pierwotnych emocji, 68 mieszanych (T. Yanaru) Analiza sygnałów EEG pozwala rozróżnić 4-8 emocji (T. Musha) Emocje: zmienne potencjały w p-przestrzeniach. Powiązania
Nowy spójny paradygmat dla kognitywistyki? Model Platoński - redukowalny do neurodynamiki, interpretowalny na poziomie psyche. Poszukiwanie niskowymiarowych reprezentacji zdarzeń mentalnych i uproszczonej dynamiki. Sieć neuronowa realizująca model statyczny znajduje użyteczne zastosowania techniczne. Podsumowanie Otwarte pytania: • Matematyczny opis p-ni o zmiennej liczbie wymiarów. • Geometryczne unaocznienie nawet prostych eksperymentów wymaga wielowymiarowych przestrzeni. • Jeśli odległości prawd. przejść to są niesymetryczne. Przestrzeń Finslera? • Wyzwanie: od neurodynamiki => przestrzeni cech dla kategoryzacji u małp. • Symulator modelu dynamicznego, redukcja dynamiki. • Na ile taki model może być przydatny?