1 / 53

EMIS 8374 The Ford-Fulkerson Algorithm (aka the labeling algorithm) Updated 4 March 2008

EMIS 8374 The Ford-Fulkerson Algorithm (aka the labeling algorithm) Updated 4 March 2008. Ford-Fulkerson Algorithm. begin x := 0; label node t ; while t is labeled do begin unlabel all nodes; pred( j ) := 0 for all j in N ; label s ; LIST := { s };

Download Presentation

EMIS 8374 The Ford-Fulkerson Algorithm (aka the labeling algorithm) Updated 4 March 2008

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EMIS 8374 The Ford-Fulkerson Algorithm (aka the labeling algorithm)Updated 4 March 2008

  2. Ford-Fulkerson Algorithm begin x := 0; label node t; while t is labeled do begin unlabel all nodes; pred(j) := 0 for all j in N; label s; LIST := {s}; while LIST is not empty and t is not labeled do begin remove a node i from LIST; for all {j in N: (i, j) in A and rij > 0} do if j is unlabeled then pred(j) := i, label j, add j to LIST; end; if t is labeled then augment flow on path from s to t end; end;

  3. (0,2) 2 4 (0,4) (0,5) 1 6 (0,4) t s (0,6) (0,7) (0,5) 3 5 Labeling Algorithm Example

  4. The Residual Network G(x) 2 2 4 4 5 0 1 6 0 0 0 4 t s 6 7 0 5 3 5 0 0

  5. Iteration 1: LIST = {1}, Labeled = {1} i = 1 2 2 4 4 5 0 1 6 0 0 0 4 t s 6 0 7 5 3 5 0 0

  6. Iteration 1: LIST = {1}, Labeled = {1} • i = 1 • LIST = {} • Arc (1,2) • pred(2) =1 • label 2 • LIST = {2} • Arc (1,3) • pred (3) = 1 • label 3 • LIST = {2, 3}

  7. pred(2) = 1 2 2 4 4 5 0 1 6 0 0 0 4 t s 6 7 0 5 3 5 0 0 pred(3) = 1 Iteration 1: LIST = {2,3}, Labeled= {1,2,3}

  8. i = 2 LIST = {3} Arc (2,4) pred(4) =2 label 4 LIST = {3,4} Arc (2,5) pred (5) = 2 label 5 LIST = {3,4,5} Arc (2,1) residual capacity of (2,1) = 0 Iteration 1:LIST = {2,3}, Labeled = {1,2,3}

  9. Iteration 1: LIST = {3,4,5}, Labeled= {1,2,3,4,5} pred(2) = 1 pred(4) = 2 2 2 4 4 5 0 1 6 0 0 0 4 t s 6 7 0 5 3 5 0 0 pred(3) = 1 pred(5) = 2

  10. Iteration 1: LIST = {3,4,5}, Labeled = {1,2,3,4,5} • i = 3 • LIST = {4,5} • Arc (3,5) • 5 is already labeled • Arc (3,1) • residual capacity of (3,1) = 0

  11. Iteration 1: LIST = {4,5}, Labeled = {1,2,3,4,5} • i = 4 • LIST = {5} • Arc (4,2) • residual capacity of (4,2) = 0 • Arc (4,6) • pred(6) =4 • label 6 • LIST = {5,6}

  12. Iteration 1: LIST = {5,6}, Labeled= {1,2,3,4,5,6} pred(2) = 1 pred(4) = 2 2 2 4 4 5 0 pred(6) = 4 1 6 0 0 0 4 t s 6 7 0 5 3 5 0 0 pred(3) = 1 pred(5) = 2

  13. Iteration 1: The sink is labeled • Use pred labels to trace back from the sink to the source to find path P • P = 1 → 2 → 4 → 6 •  = min {rij: (i, j) in P) = 2 • Send 2 units of flow from to s to t along path P

  14. (2,2) 2 4 (2,4) (2,5) 1 6 (0,4) t s (0,6) (0,7) (0,5) 3 5 Flow x After Iteration 1 v = 2

  15. The Residual Network G(x) 0 2 4 2 3 2 1 6 2 2 0 4 t s 6 7 0 5 3 5 0 0

  16. Iteration 2: LIST = {1}, Labeled = {1} • i = 1 • LIST = {} • Arc (1,2) • pred(2) =1 • label 2 • LIST = {2} • Arc (1,3) • pred (3) = 1 • label 3 • LIST = {2, 3}

  17. Iteration 2: LIST = {2,3}, Labeled={1,2,3} p=1 0 2 4 2 3 2 1 6 2 2 0 4 t s 6 7 0 5 3 5 0 0 p=1

  18. i = 2 LIST = {3} Arc (2,4) residual cap (2,4) = 0 Arc (2,5) pred (5) = 2 label 5 LIST = {3,5} Arc (2,1) residual capacity of (2,1) = 0 Iteration 2: LIST = {2,3}, Labeled = {1,2,3}

  19. Iteration 2: LIST = {3,5}, Labeled={1,2,3,5} p=1 0 2 4 2 3 2 1 6 2 2 0 4 t s 6 7 0 5 3 5 0 0 p=1 p=2

  20. i = 3 LIST = {5} Arc (3,5) 5 is already labeled Arc (3,1) residual capacity of (3,1) = 0 i = 5 LIST = {} Arc (5,2) residual cap = 0 Arc (5,3) residual cap = 0 Arc (5,6) pred(6) = 5 label 6 LIST = {6} Iteration 2: LIST = {3,5}, Labeled = {1,2,3,5}

  21. Iteration 2: LIST = {6}, Labeled={1,2,3,5,6} p=1 0 2 4 2 3 2 1 6 2 2 0 4 t s 6 7 p=5 0 5 3 5 0 0 p=1 p=2

  22. Iteration 2: The sink is labeled • Use pred labels to trace back from the sink to the source to find path P • P = 1 -> 2 -> 5 -> 6 •  = min {rij: (i,j) in P) = 3 • Send 3 units of flow from to s to t along path P

  23. (2,2) 2 4 (2,4) (5,5) 1 6 (3,4) t s (0,6) (3,7) (0,5) 3 5 Flow x After Iteration 2 v = 5

  24. The Residual Network G(x) 0 2 4 2 0 2 1 6 2 5 3 1 t s 6 4 0 5 3 5 0 0

  25. Iteration 3: LIST = {1}, Labeled = {1} • i = 1 • LIST = {} • Arc (1,2) • residual capacity = 0 • Arc (1,3) • pred (3) = 1 • label 3 • LIST = {3}

  26. Iteration 3: List = {3}, Labeled = {1,3} 0 2 4 2 0 2 1 6 2 5 3 1 t s 6 4 0 5 3 5 0 0 p=1

  27. Iteration 3: LIST = {3}, Labeled = {1,3} • i = 3 • LIST = {} • Arc (3,1) • residual capacity = 0 • Arc (3,5) • pred (5) = 3 • label 5 • LIST = {5}

  28. Iteration 3: List = {5}, Labeled = {1,3,5} 0 2 4 2 0 2 1 6 2 5 3 1 t s 6 4 0 5 3 5 0 0 p=1 p=2

  29. Iteration 3: LIST = {5}, Labeled = {1,3,5} • i = 5, LIST = {} • Arc (5,2) • pred(2) = 5 • label 2 • LIST = {2} • Arc (5,3): residual capacity = 0 • Arc (5,6) • pred (6) = 5 • label 6 • LIST = {2,6}

  30. Iteration 3: List = {2,6}, Labeled = {1,2,3,5,6} p=5 0 2 4 2 0 2 1 6 2 5 3 1 t s 6 4 p=5 0 5 3 5 0 0 p=1 p=2

  31. Iteration 3: The sink is labeled • Use pred labels to trace back from the sink to the source to find path P • P = 1 -> 3 -> 5 -> 6 •  = min {rij: (i,j) in P) = 4 • Send 4 units of flow from to s to t along path P

  32. (2,2) 2 4 (2,4) (5,5) 1 6 (3,4) t s (4,6) (7,7) (4,5) 3 5 Flow x After Iteration 3 v = 9

  33. The Residual Network G(x) 0 2 4 2 0 2 1 6 2 5 3 1 t s 2 0 7 1 3 5 4 4

  34. Iteration 4: LIST = {1}, Labeled = {1} • i = 1 • LIST = {} • Arc (1,2) • residual capacity = 0 • Arc (1,3) • pred (3) = 1 • label 3 • LIST = {3}

  35. Iteration 4: List = {3}, Labeled = {1,3} 0 2 4 2 0 2 1 6 2 5 3 1 t s 2 0 7 1 3 5 4 4 p=1

  36. Iteration 4: LIST = {3}, Labeled = {1,3} • i = 3 • LIST = {} • Arc (3,1) • 1 is labeled • Arc (3,5) • pred (5) = 3 • label 5 • LIST = {5}

  37. Iteration 4: List = {5}, Labeled = {1,3,5} 0 2 4 2 0 2 1 6 2 5 3 1 t s 2 0 7 1 3 5 4 4 p=3 p=1

  38. Iteration 4: LIST = {5}, Labeled = {1,3,5} • i = 5 • LIST = {} • Arc (5,2) • pred(2) = 5 • label 2 • LIST = {2} • Arc (5,6) • residual capacity = 0

  39. Iteration 4: List = {2}, Labeled = {1,2,3,5} p=5 0 2 4 2 0 2 1 6 2 5 3 1 t s 2 0 7 1 3 5 4 4 p=3 p=1

  40. Iteration 4: LIST = {2}, Labeled = {1,2,3,5} • i = 2 LIST = {} • Arc (2,1) • 1 is already labeled • Arc(2,4) • residual capacity = 0 • Arc (2,5) • 5 is already labeled

  41. Iteration 4 • List = {} • The sink is not labeled • Algorithm ends with optimal flow x

  42. Correctness • At the end of each iteration, the algorithm either augments the flow or terminates because it can’t label the sink. • Let S be the set of labeled nodes when the algorithm terminates. Let T = N \ S. • We need to show that when the algorithm terminates v = u[S, T] which implies x is a maximum flow.

  43. Correctness: arcs in (S, T) j s i

  44. Correctness: arcs in (T, S) s i j • Implies s can reach node i in G(x) • Implies i is labeled (i.e., node i is in S) • Implies xij = 0 • Contradiction. If i in T and j in S, then xij = 0 • Suppose xij > 0 • rji = uji – xji + xij • Implies rji > 0 since ujixji

  45. Complexity • Let U = max {(i, j) in A} uij. • If S = {s} and T = N\{s}, then u[S, T] ≤ nU. • The maximum flow is at most nU. • The inner loop runs at most nU times. • An iteration of the inner while loop is O(m): • Each arc is inspected at most once • Finding  is O(n) • Updating the flow on P is O(n) • Complexity is O(nmU).

  46. (0,106) (0,106) 2 1 5 (0,1) s t 3 (0,106) (0,106) Pathological Example

  47. (0,106) (0,106) 2 1 5 (0,1) s t 3 (0,106) (0,106) Pathological Example: First Augmenting Path v = 1

  48. Residual Network 106 106-1 2 1 1 5 s t 1 1 106 3 106-1

  49. An Augmenting Path in the Residual Network 106 106-1 2 1 1 5 s t 1 1 106 3 106-1

  50. Updated Flow in G (1,106) (1,106) 2 1 5 (0,1) s t 3 (1,106) (1,106) v = 2

More Related