1 / 17

Ukrainian Synchronous Network of Small Internet Telescopes

Ukrainian Synchronous Network of Small Internet Telescopes as Rapid Action Instrument for Transient Objects B.E. Zhilyaev 1,2 , M.V. Andreev 2 , Ya.O. Romanyuk 1 , A.V. Sergeev 2 , O.A. Svyatogorov 1 , V.K. Tarady 2 1 Main Astronomical Observatory, NAS of Ukraine,

Download Presentation

Ukrainian Synchronous Network of Small Internet Telescopes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ukrainian Synchronous Network of Small Internet Telescopes as Rapid Action Instrument for Transient Objects B.E. Zhilyaev 1,2, M.V. Andreev 2, Ya.O. Romanyuk1, A.V. Sergeev 2, O.A. Svyatogorov 1, V.K. Tarady 2 1 Main Astronomical Observatory, NAS of Ukraine, 27 Akademika Zabolotnoho, 03680 Kyiv, Ukraine e-mail: zhilyaev@mao.kiev.ua 2 International Center for Astronomical, Medical and Ecological Research, 361605, Terskol Settlement, Elbrus region, Russia

  2. Introduction • UNIT(The Ukrainian synchronous Network of small Internet Telescopes) is a system of automated telescopes that search for simultaneous optical activity of transient objects associated with variable stars, small bodies of the Solar system, Near-Earth objects (NEOs), gamma-ray bursts, etc. • Their instruments are sensitive down to MV ~ 18 and require an average of 60 seconds to obtain the first images of the transient objects after the alarm or GCN notice (slew speed up to 3˚/sec). Telescopes of UNIT are equipped with fast CCD cameras to study astrophysics on the timescales up to tens Hz. • UNIT will be operating by the middle of 2008.

  3. Some Features of the Network The philosophy of UNIT is to develop an instrument allowing to obtain observations through the Internet from a PC at any location. UNIT is primarily supposed for professional applications. It can also be employed for educational aims by students via a www gateway.

  4. Instrumentation • UNIT consists of two observation complexes in Ukraine and Russia (Peak Terskol) complete by small Celestron robotic telescopes with aperture 11 and 14 inches. We will use the UBVR filter-set. • We will use frame-transfer CCDs as the detectors for UNIT. The cooled chips have imaging areas of 1024x1024 and 512x512 pixels with resulting dark current of 0.5 e-/pixel/s. For small windows it is possible to take 0.01 s exposures.

  5. Data acquisition • The CCD software operates on Windows-based systems and gives complete control over the image capture functions. The data is transferred to a PC via a PCI bus. • The UNIT telescopes run under local operator control. Observer communicates with operator using the VoIP technology of real-time talk/call transmissions through data networks. He conducts voice & video conversation, using connected to the computer microphone, loud speaker and webcam. • He can also utilize the handwritten input for writing of instantaneous reports through data network too.

  6. Performance Figure 1. Under average conditions, i.e. seeing of ~ 1 arcsec, 2 min exposure a detectable magnitude is around U ~ 21. It is possible to measure stars up to 18 mags with a 5% precision. Stars of around 12 mag can be measured with 1% precision with 10 sec exposure. Practical measurements on Peak Terskol (M. Andreev) fully coincide with theoretical estimations.

  7. Fast photometry Figure 2. Under seeing of ~ 1 arcsec it is possible to carry out fast stellar photometry within 5-50 Hz for stars of 10-13 magnitude with the precision of 10-20%. Practical measurements with the 11 inch Celestron at Peak Terskol (N. Karpov) proved that we could pick a detectable magnitude 17.5 with 2 sec exposure. It is close to the theoretical estimations.

  8. Celestron. Focal reducer F/6.3. Cooling 22C below. Exposure = 2 sec. CCD APOGEE E. FOV = 24x24 arc min, 1.4x1.4'' per pixel. Pleiades

  9. The limiting magnitude is of ~ 17.5 with a 1 sec and ~ 21 with a 10 min exposurein the white light Exposure = 2 sec, S/N ≈ 14 for 15.2 mag; σ = 0.07 mag NOTE: The limiting magnitude is calculated for a signal-to-noise ratio equal to unity

  10. Some comparisons • TAROTis an automatic, autonomous observatory. Telescope : D=250 mm , F=800 mm equipped by a CCD Marconi 4240. The limiting magnitude is of V ~ 17 with a 10 sec and V ~ 19 with a 1 min exposure. TAROT began observations of GRB detected by HETE on 09 Feb 2005, 26 seconds after the GCN notice. • Full automated Internet-telescope MASTER, Russia, Near Moscow, Alexander Krylov Observatory, Sternberg Astronomical Institute. Modified Richter-Slefogt Camera, D = 355 mm, D/F - 1:2.4, Flat FOV – 5x5o. CCD-camera AP16E (4000x4000). On optical observations of GRB: GRB040308 (GCN 2543) - 48 h after trigger time, OT limit 21.2 mag . 

  11. Comparisonwith ULTRACAM For comparison we present analogical results for the limiting magnitudes with ULTRACAM (at a signal-to-noise of 10) as a function of exposure time at the GHRIL focus of the 4.2-m William Herschel Telescope (WHT) on La Palma. Difference between both our calculations and practical measurements and of the ULTRACAM data is explained only by a geometrical factor – different diameters of telescopes – and equals about 4 magnitudes (15 / 11 mag for the 0.1 s time resolution and 13 / 9 mag for the 0.01 s one).

  12. CCD Rolera-MGi & 14 inch telescope Celestron Некоторые задачи Классическая UBVR фотометрия до 18 зв. вел. Синхронная фотометрия с 2-мя отдаленными телескопами в диапазоне частот 5-50 Гц для звезд 10-15 зв. вел. (техника совпадения отсчетов). Фликеринг переменных звезд 13-18 зв. вел. (катаклизмические, новые, старые новые, etc.). Быстрая спектроскопия небесных тел до 10 зв. вел. с разрешающей силой 100 - 200 при отношении сигнал/шум ~ 10 с временным разрешением ~ 1 сек.

  13. CCD Rolera-MGi & 14 inch telescope Celestron Некоторые задачи Наблюдение послесвечений гамма вспышек в UBVR по алертам сети GCN (GRB Coordinates Network) в рамках международной кооперации. Прогноз: при времени готовности ~ 2 мин в среднем можно зарегистрировать послесвечение гамма вспышки с частотой одно событие в 4 месяца в диапазоне 16-18 зв. вел. в предположении вероятности ясного неба = ¼.

  14. CCD Rolera-MGi & 14 inch telescope Celestron Некоторые задачи Наблюдение событий гравитационного линзирования небесных тел (экзопланет, звезд, черных дыр и т.д.) в рамках международной кооперации в UBVR по алертам сети MPS (Microlensing Planet Search Project) и др.

  15. POST SCRIPTUM • В основе проекта должны лежать идеи высокой технологии, оригинальные методы наблюдений и обработки данных, know-how. • Только такой подход обеспечит выживание проекта в условиях высокой конкуренции в мировом научном сообществе. • Астропункт Сети: штатный прибор + Интернет + обученный оператор. Корреспондентов и участников Сети можно организовать в любой стране мира, в том числе на украинской станции в Антарктиде. Такого проекта нет нигде в мире.

  16. POST SCRIPTUM Два примера научных задач Сети (1)Синхронные наблюдения транзиентов Figure Left side: The light curves of NGC7331 taken synchronously at intervals of 10 ms with the Terskol 2-m (upper) and the Crimean 50-inch (lower) telescopes separated by a distance of about thousand kilometers from each other on Sept 19, 2004, 18:27:27.59 UT (start time) in the B band. Both curves are in relative units, the lower is shifted for convenience. The joint confidence probability of a burst is of 99.999880 percent. Right side: The same for the Seyfert galaxy NGC1068 on Sept 22, 2004, 00:30:00.19 UT (start time). The light curves are taken synchronously at intervals of 10 ms and rebinned to 0.5 s with the Terskol 2-m (upper) and the Crimean 50-inch (lower) telescopes, the B band. The flare event is defined by the joint confidence probability of 99.999917 percent.

  17. Корональная сейсмология звезд (2) Высокочастотные колебания во вспышках звезд A flare on EVLac, Oct 15, 1996, U band Нами установлен новый ранее неизвестный факт: колебания вспышки между состояниями оптически толстой и оптически тонкой плазмы в Бальмеровском континууме. Эти колебания недавно нашли теоретическое объяснение (Куприянова и др., 2004; Степанов и др., 2005). Колебания рассматриваются как быстрые магнитозвуковые колебания в магнитных корональных петлях звезды. Теория дает при этом возможность оценить характеристики корональных петель (температуру, электронную концентрацию, характерные размеры, локализацию вспышки), т.е. диагностировать корону звезды. Это открывает новые перспективы для изучения корон вспыхивающих звезд, “корональной сейсмологии”. Материалом для такого рода работ могут служить синхронные наблюдения вспыхивающих звезд в UBVR-системе на нескольких удаленных телескопах Сети с высоким временным разрешением. High-frequency oscillations & the wavelet spectrum.

More Related