640 likes | 700 Views
Time dependent Schr ö dinger [H o + V(t)] = i ħ /t. Time independent H o o = E o o. Time dependent [H o + V(t)] = i ħ /t. Harry Kroto 2004. Atoms Molecules. Basically only electronic transitions . >10000 cm -1. Harry Kroto 2004.
E N D
Time dependent Schrödinger [Ho + V(t)] = iħ/t Time independent Hoo= Eoo Time dependent [Ho + V(t)] = iħ/t Harry Kroto 2004
Atoms Molecules Basically only electronic transitions >10000 cm-1 Harry Kroto 2004
C We have to solve the Time independent problem Hoo= Eoo Harry Kroto 2004
Atoms Molecules Basically only electronic transitions electronic transitions E > 10000 cm-1 Vibrational transitions E = 100-10000 cm-1 Rotational transitions E = 0.1 – 100 cm-1 >10000 cm-1 Harry Kroto 2004
The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ … Harry Kroto 2004
The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ … = el vib rot … =i i Harry Kroto 2004
The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ … = el vib rot … =i i E = Eel + Evib + Erot +… E= i Ei Harry Kroto 2004
The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ … = el vib rot … =i i E = Eel + Evib + Erot +… E= i Ei We shall often use Dirac notation mm and m* n Harry Kroto 2004
Time independent Hoo= Eoo Harry Kroto 2004
Time independent Hoo= Eoo Stationary States mo m Harry Kroto 2004
Time independent Hoo= Eoo Stationary States mo m m o Harry Kroto 2004
D Selection Rules Need to solve the Time Dependent Problem Harry Kroto 2004
Time independent Hoo= Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t m o Harry Kroto 2004
Time independent Hoo= Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t)e m o Harry Kroto 2004
Time independent Hoo= Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t)e Ee (t) = Eeocos2t Ee(t) Radiation field e Electric dipole moment m o Harry Kroto 2004
Time independent Hoo= Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t)e Ee (t) = Eeocos2t Ee(t) Radiation field e Electric dipole moment = mam(t)m m o Harry Kroto 2004
Fermi’s Golden Rule x Io I l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l is the absorption coefficient = (83/3hc)n em2(Nm-Nn)(o-) Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) • ① • Square of the transition moment nem2 Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② • Square of the transition moment nem2 • Frequency of the light Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② ③ • Square of the transition moment nem2 • Frequency of the light • Population difference (Nm- Nn) Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② ③ ④ • Square of the transition moment nem2 • Frequency of the light • Population difference (Nm- Nn) • Resonance factor - Dirac delta function (0) = 1 Harry Kroto 2004
C Solution > Energy Levels For the H atom we shall just use the Bohr result E(n) = - R/n2 D Selection Rules n no restriction l = ±1 E Transition Frequencies E = - R[ 1/n22 – 1/n12] Harry Kroto 2004
Hot gas cloud –the famous Orion Nebulae At the centre is the Trapezium Cluster of very hot new stars Harry Kroto 2004
Collisions in the Interstellat Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Number densities are anything from n = 1-1000 Harry Kroto 2004
Einstein Coefficients n Bn<-m m Harry Kroto 2004
Einstein Coefficients n Bn<-m Bn->m m Harry Kroto 2004
Einstein Coefficients n Bn<-m Bn->m An->m m An->m/ Bn->m = 8h3/c 3 Harry Kroto 2004
Einstein Coefficients n Bn<-m Bn->m An->m m A = 1.2 x 10-37 3n em2 transitions per sec Spontaneous emission lifetime (sec) = 1/A = 1037/3 sec Harry Kroto 2004
(sec) = 1037/3 (cm-1) (Hz) 3 (Hz3) (sec) H (1420 MHz) 21cm 0.05 1.5x109 3x1027 1010 * H2CO rotations 1cm 1 3 x 1010 3x1031 106 CO2 vibrations 10 103 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 2x104 1.5 x 1014 6 x 1044 10-7 H Lyman 100nm 105 3 x 1015 3 x 1046 10-9 Calculations assume e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004
Bohr radius an = aon2 ao = 0.05 nm Harry Kroto 2004