1 / 10

Simulaciones numéricas de discos de acreción delgados

Simulaciones numéricas de discos de acreción delgados. 1. Carlos Vigh 1,2 , Fernanda Montero 1,3 y Daniel Gómez 1,2. 2. http://astro.df.uba.ar. 3. AAA 48, La Plata, 22 de setiembre de 2005. Discos de acreción. En los llamados discos de acreción se produce una importante conversión de

teague
Download Presentation

Simulaciones numéricas de discos de acreción delgados

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simulaciones numéricas dediscos de acreción delgados 1 Carlos Vigh1,2, Fernanda Montero1,3 y Daniel Gómez1,2 2 http://astro.df.uba.ar 3 AAA 48, La Plata, 22 de setiembre de 2005

  2. Discos de acreción En los llamados discos de acreción se produce una importante conversión de energía gravitatoria en otras formas de energía. El modelado de la dinámica de discos de acreción permite estudiar diferentes problemas astrofísicos, tales como sistemas protoestelares, protoplanetarios o núcleos activos de galaxias (AGNs). Es en si mismo interesante el proceso difusivo que sufre el impulso angular de la materia acretada, el cual es controlado por la viscosidad del fluído. En muchos casos, parte de la materia acretada da orígen a jets bipolares a lo largo del eje de rotación. Existe consenso en que los campos magnéticos generados por el propio objeto juegan un importante papel en la gestación de dichos jets.

  3. Ecuaciones de movimiento El estado dinámico de un disco delgado, esta determinado por su espesor y por las componentes polares de la velocidad, es decir: Satisfacen En los límites incompresible y axisimétrico, las ecuaciones de evolución resultan Se satisfacen las leyes de balance global En los casos de flujos compresibles, se incorpora la densidad de masa que cumple una relación politrópica con la presión, es decir

  4. Simulaciones de discos delgados Desarrollamos un código numérico de diferencias finitas centradas de segundo órden para las derivadas radiales y un esquema Runge-Kutta para la integración temporal. Los parámetros a determinar en cada simulación son: : coeficiente de viscosidad : número de Mach : índice politrópico : tasa de inyección de masa Exigimos condiciones de contorno para ,para y para las derivadas radiales de la velocidad, en Obtenemos la distribución espacial y temporal del espesor, las componentes de la velocidad, presión, densidad y temperatura.

  5. Balance de invariantes globales Uno de los tests de nuestro código fue evaluar cuantitativamente el balance de los invariantes globales, es decir: masa, impulso angular y energía. Computamos la derivada temporal de estas cantidades, y comparamos con sus fuentes de variación. Las figuras muestran la calidad de la comparación para dos simulaciones diferentes.

  6. Simulaciones de relajación A fin de estudiar la difusión de masa e impulso angular causada por la viscosidad del fluido, realizamos simulaciones de relajación, cuya condición inicial de un anillo de masa gaussiano. Las condiciones son de fuga en ambos contornos.

  7. Simulaciones incompresibles En el límite de número de Mach muy pequeño, el fluído se comporta de manera incompresible. Las condiciones de contorno son fijas en y de fuga en Mostramos tambien la luminosidad,que suponemos igual a la disipación viscosa del fluído.

  8. Simulaciones isotérmicas Realizamos tambien simulaciones con alto número de Mach. Por ejemplo el caso isotérmico, correspondiente a índice politrópico . En todas las simulaciones, observamos la propagación de ondas de gravedad.

  9. Simulaciones adiabáticas Realizamos tambien simulaciones con otros valores del índice politrópico, tales como el caso adiabático . No observamos diferencias significativas al variar este índice.

  10. Conclusiones Desarrollamos en nuestro grupo de plasmas astrofísicos un código numérico que simula la dinámica de discos de acreción delgados. Testeamos que el código reproduce con excelente precisión el balance de los invariantes globales: masa, impulso angular y energía. Comprobamos que en todos los casos la velocidad de rotación corresponde a un perfil kepleriano, es decir que Encontramos en todas las simulaciones la propagación de ondas de gravedad. Verificamos que la luminosidad de discos de acreción se concentra en una pequeña fracción de su radio total. Nos proponemos incorporar efectos magnéticos, a fin de evaluar su rol en la generación de jets bipolares en estos objetos.

More Related