1 / 47

Introduction to asynchronous circuit design: specification and synthesis

Introduction to asynchronous circuit design: specification and synthesis. Part II: Synthesis of control circuits from STGs. Outline. Overview of the synthesis flow Specification State graph and next-state functions State encoding Implementability conditions Speed-independent circuit

teressat
Download Presentation

Introduction to asynchronous circuit design: specification and synthesis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction toasynchronous circuit design: specification and synthesis Part II: Synthesis of control circuitsfrom STGs

  2. Outline • Overview of the synthesis flow • Specification • State graph and next-state functions • State encoding • Implementability conditions • Speed-independent circuit • Complex gates • C-element architecture

  3. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist Design flow

  4. x x y y z z z+ x- x+ y+ z- y- Signal Transition Graph (STG)

  5. x y z z+ x- x+ y+ z- y-

  6. xyz 000 x+ 100 y+ z+ z+ x- 110 101 x- x+ y+ z- y- y+ z+ 001 111 y- y+ x- 011 z- 010

  7. xyz 000 x+ 100 y+ z+ 110 101 x- y- y+ z+ 001 111 y+ x- 011 z- 010 Next-state functions

  8. Next-state functions x y z

  9. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  10. Bus Data Transceiver DSr LDS Device D LDTACK DSr LDS VME Bus Controller DSw LDTACK D DTACK DTACK Read Cycle VME bus

  11. STG for the READ cycle DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D LDS DSr VME Bus Controller LDTACK DTACK

  12. DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- DTACK- DTACK- LDTACK- D+ LDTACK+ DTACK+ D- LDS- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  13. DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- DTACK- DTACK- LDTACK- D+ LDTACK+ DTACK+ D- LDS- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  14. DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- DTACK- DTACK- LDTACK- D+ LDTACK+ DTACK+ D- LDS- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  15. DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- DTACK- DTACK- LDTACK- D+ LDTACK+ DTACK+ D- LDS- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  16. Circuitsynthesis • Goal: • Derive a hazard-free circuitunder a given delay model andmode of operation

  17. Speed independence • Delay model • Unbounded gate / environment delays • Certain wire delays shorter than certain paths in the circuit • Conditions for implementability: • Consistency • Complete State Coding • Persistency

  18. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  19. STG for the READ cycle DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D LDS DSr VME Bus Controller LDTACK DTACK

  20. LDS + LDS = 0 LDS - LDS = 1 Binary encoding of signals DSr+ DTACK- LDS+ LDTACK- LDTACK- LDTACK- DSr+ DTACK- LDS- LDS- LDS- LDTACK+ DSr+ DTACK- D+ D- DTACK+ DSr-

  21. 01100 00110 Binary encoding of signals 10000 DSr+ DTACK- LDS+ LDTACK- LDTACK- LDTACK- DSr+ DTACK- 10010 LDS- LDS- LDS- LDTACK+ DSr+ DTACK- 10110 01110 10110 D+ D- DTACK+ DSr- (DSr , DTACK , LDTACK , LDS , D)

  22. ER (LDS+) LDS+ QR (LDS-) LDS- LDS- LDS- ER (LDS-) QR (LDS+) Excitation / Quiescent Regions

  23. LDS+ LDS- LDS- LDS- 10110 10110 Next-state function 0  1 0  0 1  1 1  0

  24. DTACK DSr DTACK DSr D LDTACK D LDTACK 00 00 01 01 11 11 10 10 00 00 01 01 11 11 10 10 Karnaugh map for LDS LDS = 1 LDS = 0 - - - 0 0 - 1 1 - - - - - - - - 1 1 1 - - - - - 0 0 - 0 0 0 - 0/1?

  25. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  26. DSr+ DSr+ DSr+ Concurrency reduction LDS+ LDS- LDS- LDS- 10110 10110

  27. Concurrency reduction DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS-

  28. State encoding conflicts LDS+ LDTACK- LDS- LDTACK+ 10110 10110

  29. CSC+ CSC- Signal Insertion LDS+ LDTACK- LDS- LDTACK+ 101101 101100 D- DSr-

  30. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  31. Complex-gate implementation

  32. Implementability conditions • Consistency • Rising and falling transitions of each signal alternate in any trace • Complete state coding (CSC) • Next-state functions correctly defined • Persistency • No event can be disabled by another event (unless they are both inputs)

  33. Implementability conditions • Consistency + CSC + persistency • There exists a speed-independent circuit that implements the behavior of the STG(under the assumption that ay Boolean function can be implemented with one complex gate)

  34. a- c+ a 100 000 001 b c b+ b+ Persistency a c b is this a pulse ? Speed independence  glitch-free output behavior under any delay

  35. a+ 0000 a+ b+ 1000 b+ 1100 a- a- 0100 c+ c+ 0110 d+ d- d+ 0111 a+ a+ 1111 b- b- 1011 a- c- a- c- 0011 1001 a- c- d- 0001

  36. ab 0000 cd 00 01 11 10 a+ 1000 0 0 0 0 00 b+ 1100 1 0 a- 01 0100 c+ 1 1 1 1 0110 11 d- d+ 0111 1 10 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ER(d+) ER(d-)

  37. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 Complex gate

  38. S z C R Implementation with C elements • • •  S+  z+  S-  R+  z-  R-  • • • • S (set) and R (reset) must be mutually exclusive • S must cover ER(z+) and must not intersect ER(z-)  QR(z-) • R must cover ER(z-) and must not intersect ER(z+)  QR(z+)

  39. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 S d C R

  40. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 but ... S d C R

  41. Assume that R=ac has an unbounded delay 0000 a+ 1000 b+ 1100 a- 0100 c+ R+ disabled (potential glitch) 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 Starting from state 0000 (R=1 and S=0): a+ ; R- ; b+ ; a- ; c+ ; S+ ; d+ ; S d C R

  42. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 S a- c- d 0011 1001 C R a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 Monotonic covers

  43. S d C R C-based implementations c d C b a c weak c d weak d a a b generalized C elements (gC)

  44. Speed-independent implementations • Implementability conditions • Consistency • Complete state coding • Persistency • Circuit architectures • Complex (hazard-free) gates • C elements with monotonic covers • ...

  45. y- y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ z- w- w+ 1010 0000 0101 w- y+ x+ z- y+ x+ x- 0010 0100 x- x+ y+ z+ 0110 z+ Synthesis exercise 1011 0011 0111 Derive circuits for signals x and z (complex gates and monotonic covers)

  46. y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 w- y+ x+ z- 0010 0100 x- x+ y+ z+ 0110 Synthesis exercise 1011 wx yz 00 01 11 10 - 1 0 1 00 0011 - 1 0 1 01 - 0 0 0 11 - 1 1 0 10 0111 Signal x

  47. y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 w- y+ x+ z- 0010 0100 x- x+ y+ z+ 0110 Synthesis exercise 1011 wx yz 00 01 11 10 - 0 0 0 00 0011 - 0 0 0 01 - 1 1 1 11 - 1 0 0 10 0111 Signal z

More Related