1 / 16

L O G A R I T M A

PEMBIMBING GISOESILO ABUDI, S.Pd. L O G A R I T M A. Pengertian Logaritma. a log b = c jika dan hanya jika a c = b a = bilangan pokok b = bilangan yang dilogkan c = bilangan hasil logaritma Perhatikan: Catatan: Logaritma bilangan nol dan negatif tidak didefinisikan

terrel
Download Presentation

L O G A R I T M A

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PEMBIMBING GISOESILO ABUDI, S.Pd L O G A R I T M A

  2. Pengertian Logaritma alog b = c jika dan hanya jika ac = b a= bilangan pokok b= bilangan yang dilogkan c= bilangan hasil logaritma Perhatikan: Catatan: Logaritma bilangan nol dan negatif tidak didefinisikan Bilangan pokok logaritma adalah positif dan tidak sama dengan 1 alog 1 = 0

  3. Merubahbentukeksponenkelogaritma Eksponen Logaritma 6log 36 = 2 62 = 36 3 27 = 3 10log1000 = 3 27log3 = 1/3 103 = 1000

  4. Sifat-sifat logaritma 1 2 3 4 5

  5. Sifat-sifat logaritma 6 7 8 9

  6. Contoh Tentukannilaidari : • 2log 24 + 2log 3 - 2log 9 • log 5 + log 4 - log 2 + log 10 • 2. 2log 8 + 2log √2 – 3.2log 1/4

  7. Penyelesaian a 2log 24 + 2log 3 - 2log 9 = 2log (24 . 3) : 9 = 2log 8 = 2log 23 = 3.2log 2 = 3 Sifat 1 dan 2 Sifat 3

  8. Penyelesaian b log 5 + log 4 - log 2 + log 10 Log = log 100 = 2 Sifat 1 dan 2

  9. Penyelesaian c 2. 2log 8 + 2log √2 – 3.2log 1/4 = 2log 82 + 2log √2 – 2log = 2log (23)2 + 2log 2½ - 2log (2-2)3 = 2log = 2log 2 = 2log 2 = .2log 2 =

  10. Contoh Jikadiketahui log 2 = 0,3010 dan log 3 = 0,4771, makatentukan : • Log 12 • Log 36 • Log 0,125

  11. Penyelesaian a log 12 = log (2. 2. 3) = log 2 + log 2 + log 3 = 0,3010 + 0,3010 + 0,4771 = 1,0791 Dapatkahsaudaramencaripenyelesaian lain dari log 12 ?

  12. Penyelesaian b log 36 = log (2. 2. 3. 3) = log 2 + log 2 + log 3 + log 3 = 0,3010 + 0,3010 + 0,4771 + 0,4771 = 0,6020 + 0, 9542 = 1,5562 DapatkahAndamenentukanpenyelesaian lain dari log 36 ?

  13. Penyelesaian c log 0,125 = log (125 : 1000) = log ⅛ = log = log 2-3 = -3. log 2 = -3. 0,3010 = -0,9030

  14. Contoh Jika5log 4 = a dan4log 3 = b, tentukannilaidari3log 20 !

  15. Penyelesaian 3log 20 = …. 4log 5 = = 3log 4= = = 3log 20 = = = = =

  16. UntuklebihjelassilahkanAndakerjakanlatihanhalaman 49 (BukupaketErlangga) SelamatMencoba Terimakasih

More Related