230 likes | 776 Views
Analogy in Mechanical (trans.-rot.), Electrical , Fluid , Thermal Systems. Reynolds Number=. D.Rowell & D.N.Wormley, System Dynamics:An Introduction, Prentice Hall, 1997. Fluid inertia in pipes:. I f :Fluid inertia, ρ : Density, L: Pipe length A: Cross section of pipe.
E N D
Analogy in Mechanical (trans.-rot.), Electrical, Fluid, Thermal Systems . .. . ..
Reynolds Number= D.Rowell & D.N.Wormley, System Dynamics:An Introduction, Prentice Hall, 1997 Fluid inertia in pipes: If:Fluid inertia, ρ: Density, L: Pipe length A: Cross section of pipe Fluid reservoir capacitance: Cf: Fluid reservoir capacitance , Ad:Cross section area of reservoir, g=9.81 m/s2 Fluid resistance of pipes in laminar flow: Rf:Resistance, µ:Viscosity, L:Pipe length, d:Pipe diameter Reynolds number in laminar flow<2000
pa Qk1 2 5 1 4 2 3 1 pk1 Q3 Q5 Equivalent Electrical Circuit of Fluidic Systems
Fluid. Elec. Qk1 2 Qn 5 1 1 pk1 4 2 3 A C2 L4 L5 L3 L2 R2 R4 R3 R5 V4 - + C1 L1 R1 Vk1 + A Q3 Q5 - Va pa pn Vn Fluidic System Rn Rn In Ln Cn Cn Equivalent Electrical Circuit
Electrical systems can be analyzed instead of fluidic systems Dynamic (Transient) behaviour Steady-state behaviour Nowadays computer aided engineering (CAD/CAE)