1 / 11

Ali  Bea  Cita 

RELASI. I. Diagram panah. II. Pasangan berurutan. {(Ali, Bola), (Bea , Tari ), ( Cita , Basket),( Cita , Padus )}. Siswa. Ekskul.  Bola  Basket  Tari  Padus. Ali  Bea  Cita . III. Cartesius. Ekskul. . Padus  Tari  Basket  Bola . . . .

tillie
Download Presentation

Ali  Bea  Cita 

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RELASI I. Diagram panah II. Pasanganberurutan {(Ali, Bola), (Bea ,Tari), (Cita, Basket),(Cita, Padus)} Siswa Ekskul  Bola  Basket  Tari  Padus Ali  Bea  Cita III. Cartesius Ekskul  Padus  Tari  Basket  Bola     Siswa    Ali Bea Cita

  2. ProdukCartesius Contoh : A = {a , b}  n (A) = 2 B = {1 , 2 , 3}  n(B) = 3 n(AXB)=6 A x B = B x A ? A x B = (a , 1) ….. B x A = (1 , a) …..  n(A x B) = n(B x A)

  3. Pemetaan / Fungsi A ke B merupakanfungsijikasetiapanggota A mempunyaitepat 1 pasanganggota B A B A B A B A B  1  2  3  4  1  2  3  4  1  2  3  4  1  2  3  4 a  b  c  a  b  c  a  b  c  a  b  c  BUKAN FUNGSI FUNGSI FUNGSI BUKAN FUNGSI O

  4. A B Domain = daerahasal = {a , b, c } Kodomain = daerahhasil = {1, 2, 3, 4} Range = hasil = {1, 2, 3}  1  2  3  4 a  b  c 

  5. A B  1  3  5  7 1  2  3  Fungsi : Nilaidari f(2) ataubayangandari 2 ataupetadari 2

  6. Banyaknyapemetaan/fungsi A = {a , b , c} B = {1, 2) A B A B A B A B a  b  c  a  b  c  a  b  c  a  b  c  • 1 • 2 • 1 • 2 • 1 • 2 • 1 • 2 A B A B A B A B a  b  c  a  b  c  a  b  c  • 1 • 2 • 1 • 2 a  b  c  • 1 • 2 • 1 • 2

  7. Contoh: A = {a , b , c} B = {1, 2) n (A) = 3 n (B) = 2

  8. Korespondensisatu-satu A B A B A B A B                          Benar Benar Salah Salah Definisi : fungsi yang memasangkansetiapanggota A (domain) tepatsatupadaanggota B (kodomain) dansebaliknya n (A) = n(B)

  9. n (A) = n(B) = 3 makabanyaknyakorespondensisatu – satuadalah ? A B A B A B                   A B A B A B                  

  10. n (A) = n(B) = a  banyaknyakorespondensisatu –satuadalah a !

  11. UH-2 Senin 21 November 2011 Materi: Relasi Menyatakanrelasi (diagram panah, pasanganberurutan, cartesius Produkcartesisu (AxB) Pemetaan/fungsi Banyakpemetaan/fungsi Nilaifungsi Korespondensisatu-satu

More Related