240 likes | 354 Views
AIK 2010. január 22. Vízgőzhálózat felügyeleti rendszerének monitorozási stratégiája kétfázisú áramlás minősítésére szolgáló technikák létrehozásával. Szakonyi L., Jancskárné A. I., Sári Z. PTE PMMK Műszaki Informatika Tanszék. ELŐZMÉNYEK, CÉLKITŰZÉSEK, EREDMÉNYEK, MEGVALÓSULT OBJEKTUMOK
E N D
AIK 2010. január 22. Vízgőzhálózat felügyeleti rendszerének monitorozási stratégiája kétfázisú áramlás minősítésére szolgáló technikák létrehozásával Szakonyi L., Jancskárné A. I., Sári Z. PTE PMMK Műszaki Informatika Tanszék
ELŐZMÉNYEK, CÉLKITŰZÉSEK, EREDMÉNYEK, MEGVALÓSULT OBJEKTUMOK A kutatás bázisrendszere: 13 km hosszúságú, DN50… DN450 névleges átmérőjű városi vízgőzhálózat ~130 ezer tonna vízgőz/év. Megelőző, GVOP projektmunka célja új információs és kommunikációs technológiák regionális hasznosításával: • a hálózatidentifikáció elvégzését, az energiaelosztás ellenőrzését biztosító monitoring rendszer; • az anyag- és energiaáram hálózat modelljeként, változó „forrásokkal”, ellenállásokkal, fogyasztóhelyekkel működtethető szimulációs rendszer; • a változó topológiák, üzemállapotok követésére alkalmas üzemviteli programcsomag; • a felügyeleti (intelligens monitoring) rendszer és a hálózati modellekhez illesztett irányítási stratégia. Jelenleg a fogyasztóhelyeken a szűkítőelemes áramlásmérőhelyhez csatlakoztatott nyomáskülönbség távadók nyomás-, illetve hőmérsékletkorrekciója túlhevített vízgőz állapotjellemzői alapján. A gőzfogyasztások jelentős visszaesésével a fogyasztói végeken jellemző a telített (nedves) vízgőz állapot, ez indokolná a mért értékek módosítását.
A gőzhálózat monitoring rendszerét bemutató műszerezési vázlat
A szimulációs futtatások és az identifikációs mérések kiértékelése bizonyította: a gőzkiadás és a gőzfelhasználás között kimutatott, éves szinten ~ 52 %-os tömegáram (hőáram) különbözetből mintegy 20 % a kondenzleválasztók-nál a környezetbe hasznosítatlanul eltávozó kondenzveszteség,~ 30 % a pontatlan gőzáram mérés. Az irányított beavatkozások vizsgálata Az üzemvitelt ellenőrző mérések pontatlansága, energiaáramok követhetőségea hálózat áramlástani és hőátviteli modelljének kialakítását, új mérési, számítási módszerek és technikák kifejlesztését indokolta.
A hálózat felmérése, vizsgálata, művelettani modellezése, bontása, szimulációja indokolta a térinformatikai háttérbázis létrehozását, meglétét. A hálózat térinformatikai vázlata
Vízgőzhálózatunknál a vezetékszakaszok vízszintes síkban való vonalvezetése dominál. A csővezetéki közegszállításra - az erőművi betáplálás induló gerincvezetékétől eltekintve - a kondenzálódás, a kétfázisú áramlás létrejötte a jellemző. Erre enged következtetni a szolgáltató monitoring rendszerével korábbiakban mért, nagyszámú összetartozó nyomás- és hőmérsékletértékek alapján készült ábra is a kondenzációs görbék feltüntetésével. Az általunk kimért időszakban a hálózat különböző üzemállapotában a nagyfogyasztók ellátását a 0…1,2 %-osnedvességtartalmú, átlagosan 9,86 bartúlnyomású telített vízgőz jellemezte.
A gőz- és folyadékfázis térfogatarányától függően a kétfázisú áramlás során különbözőáramlási formák jöhetnek létre. Számos kutató a legkülönfélébb alkalmazási területeken vizsgálta a kétfázisú áramlás során kialakuló, rendkívül sokféle áramlási formát, melyeknek előrebecslésére az egyik legismertebb a Baker-diagram. Az ábra alapján a vízszintes csőben kialakuló áramlási forma megbecsülhető a vízgőz tömegáramsűrűség és a nedvességtartalom (korrigált tömegarány) ismeretében.
A táblázat a Baker-diagramban való ábrázoláshoz szükséges állapotjellemzők értékeit tünteti fel. Az utolsó két oszlopban közölt adatok összetartozó értékeit e diagramban ábrázolva egyértelműen megerősíthető, hogy méréseink során a kétfázisú áramlást a réteges áramlási forma jellemezte. Az áramlásmérési módszerek és eszközök megválasztását, az infokommunikációs rendszer kifejlesztését is e vizsgálatok eredményei befolyásolták.
ALKALMAZOTT VIZSGÁLATI / KÍSÉRLETI MÓDSZEREK A modellezés kezdetén a vízgőzhálózati üzemvitel ellenőrzésének biztosítása, az energiatakarékos, hatékonyabb működtetés igénye(technológiai cél), az anyag-, energiaáram hálózat áramlástani (kinetikai) modelljének felállítása(modellezési cél), s a hálózattal kapcsolatos előzetes ismeretek döntik el az elemekre bontás mélységét. A vízgőzhálózat elemekre bontása
A felügyeleti rendszer monitorozási stratégiájának kidolgozása a kétfázisú áramlás minősítésére, a kondenzáramok mérésére szolgáló technikák (mérő-, adatátviteli, adatgyűjtő- és adatfeldolgozó rendszerek) létrehozásával A hőerőműben jelenleg működtetett irányítási rendszerek a nagyfogyasztók számára nem biztosítják az állandó vízgőzminőséget, esetenként a száraz vízgőz vételezésének lehetőségét. A száraz vízgőz ellenőrzésére beállított mérőeszközök csupán tájékoztató tömegáram adatokat szolgáltatnak a kétfázisú, rétegzett áramlás kialakulása miatt. Nem ismeretes a vízgőz nedvességtartalma, a fogyasztói hálózatvégeken esetlegesen kialakuló kétfázisú áramlás során az eltérő sebességgel haladó fázisok sebessége és térkitöltése. Ennek megoldását a javasolt, intelligens monitorozást biztosító felügyeleti rendszer teszi lehetővé. Az identifikációs méréseknél alkalmazott, s egyben az üzemviteli felügyeleti rendszer létrehozásához kívánatos eszközök sorában a hagyományos ipari mérőberende-zések mellett nélkülözhetetlen az egyedi tervezéssel és kivitelezéssel megvalósított, folyamatos ellenőrzést biztosító speciális mérő-érzékelők (a kétfázisú áramlás sebességeloszlásának, a fázisok térkitöltésének követésére, illetve a környezetbe távozó kondenzáramok mérésére alkalmas áramlásmérők) beépítése, a technológián folyamatosan mért jellemzők mobil adatátvitellel a felügyeleti rendszer központi gépeihez való továbbítása. A korrekt tömegmérleg megadásához szükséges a mérőhelyenkénti közegsűrűség ismerete, a kondenzleválasztóknál kilépő anyagáramok, s a fogyasztókhoz juttatott vízgőz áramlási formájának meghatározása. A felügyeleti rendszer elemei együttesen alkotják azt a mérés- és műszertechnikai, metrológia háttérbázist, mely előfeltétele a helyi ellenőrzést, a mobil távadatátvitelt, a központi felügyeletet és adatgyűjtési feladatokat biztosító infokommunikációs rendszer megfelelő működésének.
csomópont csomópont j.ág P T 3 5 7 6 8 4 Pitot-cső elvű áramlásmérő kondenzleválasztók leágazásai kondenzátorként működtetett térfogatmérőkkel és akusztikus elvű tömegárammérőkkel számított tömegáram 1 2 mérőperemes áramlásmérő 1 – Mbej; 2 – Mmpkij; 3 – MPkij; 4, 5, 6, 7, 8 - Mkli A monitorozási stratégia elvi vázlata
A felügyeleti rendszer elemei: • az áramlás jellegéről információt nyújtó – a csőszelvény szabványos pontjaiban a dinamikus nyomás mérésén alapuló, egymástól független nyomáselvételi helyekkel és kivezetésekkel rendelkező speciális áramlásmérő beépítése minden nagyfogyasztónál (a mérőszakaszokon egy-egy nyomáskülönbség távadóhoz csatlakoztatva); • a kondenzleválasztók működésének akusztikus ellenőrzése (a kiáramló vízgőz és kondenzátum által keltett zaj alapján meghatározható a nyitás periódusideje és a nyitás időtartama; az adatokat a GSM hálózatban továbbítva biztosított a folyamatos kondenzáram-mérés). A beépítésre javasolt mérő-, adatgyűjtő- és adatfeldolgozó eszközök, a mobil adatátvitel, a Honeywell felügyeleti keretrendszer az identifikációs mérések idején beüzemelve és működtetve.
A speciális áramlásérzékelők gyártási és beépítési vázlata
Terepi mérőhely elrendezése és logikai vázlata Speciális áramlásérzékelő telepítése
A szabadba távozó kondenzáram mérése az AKL-07 és az AKL-05 jelű kondenzleválasztóknál Akusztikus kondenzmérő-berendezés és ideiglenes telepítése
A gőzvezeték-hálózaton keletkező és a környezetbe kilépő kondenzvíz mérésére kifejlesztett eszköz alkalmas a terepen történő mérésre és adatrögzítésre a zárt kondenzvíz-leválasztó rendszer megbontása nélkül is. A kifejlesztett akusztikus áramlásérzékelő a kondenzleválasztókhoz közeli zárószerelvényhez mereven rögzítve méri a vizsgált rendszerből származó rezgéseket. A kondenzleválasztók két lehetséges állapotát (nyitott, illetve zárt helyzetét) jellemző akusztikus jelek eltérő amplitudójából meg lehet állapítani a kondenzáramlás indulását, illetve megszűnését. A nyitott és zárt állapotok időarányának meghatározásával számítható a leválasztón távozó kondenzvíz mennyisége. Egy adott kondenzleválasztónál telepített, két különböző mérési elven alapuló kondenzáram-mérőberendezésmérési adatsora hasonlítható össze az ábrák alapján.
Kondenzáram-mérés térfogatmérés elvén alapuló mérőberendezéssel Kondenzáram-mérés akusztikus elven működő mérőberendezéssel
Az irányított beavatkozások megvalósítására az egyik nagyfogyasztó hőközpontjában került sor az ábrán vázolt mérőrendszer hasznosításával. Az itt elvégzett irányított beavatkozások módosították a kétfázisú rétegzett áramlás sebességviszonyait, az áramló fázisok állapotjellemzőit. Az előbbi identifikációs vizsgálatok és kiértékelésük volt a próbája az új mérési, számítási módszereknek és technikáknak
A speciális áramlásmérő egyes mérőcsatornáihoz kapcsolódó nagyérzékenységű nyomáskülönbség-távadók kimenetén az irányított beavatkozások folyamán a dinamikus nyomásértékek rögzítése. A tranziensek jól szemléltetik az egyensúlyi helyzetek beállásának időszükségletét. Dinamikus nyomások tranziens lefutása a csőszelvényben
Az infokommunikációs rendszer kialakítása A teljes infokommunikációs rendszer elvi vázlata az ábrán látható. A központi felügyeletet és az adatgyűjtési feladatokat „Windows 2000 Professional” operációs rendszer alatt futó, GSM modemhez kapcsolódó számítógép látta el. A felügyeleti szoftver magja a Honeywell Enterprise Building Integrator (EBI) keretrendszer. Az energiaszolgáltató adatgyűjtő rendszere vegyes felépítésű (rádiós, GSM, GPRS, internet). Speciális érzékelőink és a szolgáltató hagyományos eszközei segítségével nyert mérési sorozatokból közös SQL alapú adatbázist hoztunk létre.
KONKLÚZIÓ A nagyfogyasztóknál kialakított méréstechnikai, műszertechnikai háttéraz alábbi üzemviteli tényezők: • az erősen lecsökkent fogyasztószám és vízgőzigény, • a tervezett és lehetséges kapacitásánál jóval alacsonyabb kihasználással működő vízgőzhálózat üzemvitele, • a tartós szaturációs állapot kialakulása miatt nem alkalmas a telített vízgőz állapotváltozásának, a nedves, változó nedvességtartalmú vízgőz minőségének követésére. Indokolt: • a kétfázisú áramlás nyomon követésére is alkalmas mérések elvégzése; • a fogyasztók számára jutatott vízgőz minőségét jellemző felügyeleti rendszer létrehozása; • az identifikációs vizsgálatokhoz kidolgozott mérési, számítási módszerek és technikák üzemviteli célú hasznosítása.
A felügyeleti rendszer műszaki és módszertani háttere Az erőműnek nem lehet elsődleges szempont a sugaras szerkezetű, részhálózatonként egy betáplálási hellyel rendelkező regionális gőzhálózat egyes végpontjain az állandó vízgőzminőség biztosítása, ha a vízgőzkiadásoknáltelepítettek a nyomásszabályozási körök érzékelő és beavatkozó szervei. A vízgőzhálózati veszteségekkövetése, az állapotjellemzők üzemközbeni korrekt meghatározása a megbízható, az esetleges kétfázisú áramlás és a kondenzveszteségek nyomonkövetésére is alkalmas érzékelők beépítését, infokommunikációs rendszer működtetését, s az előbbiekkel megvalósított üzemvitelt igényli. A kétfázisú áramlás jellemzésére kifejlesztett mérőrendszer, s a kidolgozott mérési és számítási módszer a kialakítandó felügyeleti rendszer műszaki és módszertani háttereként szolgált. Lehetővé vált a mérési eredmények kiértékelésével – homogén, ill. szlip modellt feltételezve – többek között a fázisok térkitöltésének, helyi és átlagos sebességének, tömegáramának követése.
A felügyeleti rendszer létrehozásának előfeltételei: • a kifejlesztett számítógépes modellek futtatásával változó üzemállapotok (változó energiafeladás, topológia és ellenállásviszonyok) szimulálása; • a vízgőzhálózat egyes ágaiban (valamennyi nagyfogyasztói végpont és a gerincvezetékről való leágazás csomópontja közötti ágon) a jelenlegi áramlásmérőhelyek közelében a csőszelvényben kialakult sebességeloszlás meghatározása helyi dinamikus nyomásmérés elvén, • valamennyi, a gerincvezetékről leágazó ágban telepített kondenzleválasztó távozótömegáramának mérése; • a meglévő és a javasolt mérőhelyeken mért adatok mobil kommunikációval történő továbbítása a felügyeleti rendszerhez; • a kétfázisú áramlás minősítésére és számítására szolgáló módszerek és összefüggések algoritmizálása.