1 / 31

Chap 5: Classical Magnetic dipole moment 

Chap 5: Classical Magnetic dipole moment .  magnetic dipole moment. <L>. Attracted to high B-field m l < 0,. <S>. =  r 2. m.  S ~ -<S>. L ~ -<L>. Repelled from high B-field m l > 0. Chap. 5: H-atom and One electron Ions Eigen Functions and Values.

tyler-hill
Download Presentation

Chap 5: Classical Magnetic dipole moment 

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chap 5: Classical Magnetic dipole moment   magnetic dipole moment <L> Attracted to high B-field ml < 0, <S> = r2 m S ~ -<S> L~ -<L> Repelled from high B-field ml > 0

  2. Chap. 5:H-atom and One electron Ions Eigen Functions and Values Ylm( Angular part of the eigen-functions for the Schrödinger Eq. are also the eigen functions for the Magnitude Squared of the total orbital angular momentum: L2 L2 Ylm(=l(l+1)h2Ylm( and the projection of the total orbital angular momentum vector along the z-axis: Lz Lz Ylm( = mhYlm(

  3. Chap. 5:H-atom and One electron Ions Eigen Functions and Values Ylm( Angular part of the eigen-functions for the Schrödinger Eq. are also the eigen functions for the Magnitude Squared of the total orbital angular momentum: L2 L2 Ylm(=l(l+1)h2Ylm( and the projection of the total orbital angular momentum vector along the z-axis: Lz Lz Ylm( = mhYlm( B=Baz Magnetic Field B

  4. Chap. 5:H-atom and One electron Ions Eigen Functions and Values Ylm( Angular part of the eigen-functions for the Schrödinger Eq. are also the eigen functions for the Magnitude Squared of the total orbital angular momentum: L2 L2 Ylm(=l(l+1)h2Ylm( and the projection of the total orbital angular momentum vector along the z-axis: Lz Ex: l = 2 Lz Ylm( = mhYlm( B=Baz m < 0 m < 0 Magnetic Field B

  5. Chap. 5: Correspondence Principle and the Bohr Limit L=nh The Bohr limit only applies for l >>1 <|L|2>=L2 = l(l+1)h2  l2h2 for l >>1 the Bohr limit! Magnitude of L=√L2~ lh, l >>1 and the its z-axis projection <Lz>= Lz ~ lh (-h2/2m) ”nlm + V(r) nlm = Ennlm where nlm(r,,) = Rnl( r )Ylm( L2 Ylm(=l(l+1)h2Ylm( and Lz Ylm( = mhYlm( Therefore n, l, m and Encompletely characterizes a Quantum State along with Electron spin angular momentum!

  6. Chap. 5: Correspondence Principle and the Bohr Limit L=nh Ex: Lz= -ih∂/∂ Lz operator Lz Ylm( = -ih∂(Ylm( /∂)= mhYlm( Therefore Ylm(~ exp(im) ∂(Ylm( /∂)= im Ylm( -ih∂(Ylm( /∂ = -ihim Ylm( Lz Ylm( = mhYlm( Eigen Value Eigen Function

  7. Vector model of the Spin angular momentum s=1/2 s =1/2 is the spin angular momentum quantum number B||z repelled from stronger B-field ms=+1/2 <S>=Sz= msh S-spin angular momentum Vector x,y plane <|S|2>=S2 magnitude squared Of the Spin angular Momentum Vector S S2= s(s+1)h2 The magnitude √S2=√s(s+1)h2 ms=-1/2 attracted to stronger B-field

  8. Chap 5: Classical Magnetic dipole moment   magnetic dipole moment <L> Attracted to high B-field ml < 0, <S> = r2 m S ~ -<S> L~ -<L> Repelled from high B-field ml > 0

  9. Chap 5: Angular Momentum Eigen Values Vector model of t bare angular momentum L: only the Magnitude L and one component, Lx, Ly or Lzcan be measured! Magnitude Squared <|L|2>=L2=l(l+1)h2 z-axis projection Lz= mlh z Magnitude of L L= √l(l+1)h2 ml =+1 <L>=Lz= mlh L y ml =0 x L Ex. For: l= 1 2l + 1 ml –values 2(1)+1=3 ml =-1

  10. Chap 5: Angular Momentum Eigen functions Ypz=Y10( z  x <Lz>=0 L Angular eigen function for the State l=1; m=0 Ypz=Y10(=√(3/4π) cos() Angular momentum Eigen Function + Phase L=√2 h + Notice that only Eigen Values are knowable, i.e., measurable: E, L2, Lz - - Phase Ypz=Y10(= √(3/4π) cos() |Y10(|2 =(3/4π) cos2()

  11. Chap. Spherical Coordinate Sphere of Radius r

  12. Chap 5: Angular Momentum Eigen functions Ypz= Ypz Ypy Ypz=Y10~cos() Linear Combinations of Eigen Functions Ypx=(1/√2){Y11 + Y1-1} ~ sin()cos() Ypy=(1/√2){Y11 - Y1-1} ~ sin()sin() Liner Superposition of states (l, m) in this Case of (l=1, m=+1) and (l=1, m=-1)

  13. z y x |Y00|2 |Y1±1|2 |Y10|2

  14. Chap. 5: 3-D Probability Density r|2dV =|R(r)Y()|2dV Probability per unit volume of finding the electron in the volume element: dV=dxdydz= {rd}{rsin(d}dr |R(r )|2 (r2dr) probability of finding the electron between a distance r and r+dr |R(r )|2 r2 Prob per unit length |Y()|2sin(dd= |Y()|2d probability of finding the electron in the solid angle d=sin(dd |Y()|2 Prob per unit solid angle Fig. 5-1, p. 171

  15. Chap. Solid Angle for a Sphere of Radius r The solid angleddA/r2 = sin(dddV= dr dA(surface area of dV), dA = r2sin(dd A=4πr2(surface area of the sphere)r2 = 4π solid angle portended(projected) by a sphere dA Differentail Area

  16. Chap 5: Angular Momentum Eigen functions Ypz= Ypz Ypy Ypz=Y10~cos() Linear Combinations of Eigen Functions Ypx=(1/√2){Y11 + Y1-1} ~ sin()cos() Ypy=(1/√2){Y11 - Y1-1} ~ sin()sin()

  17. =Zr/a0 • Recall that the Bohr radii are rn= n2/Za0 Table 5-2, p. 175

  18. Chap 5:1s ~R10( r ) Y00(, 2s~R20( r ) Y00(, 3s~R30( r ) Y00( Number of Nodes in Rnl (n-l-1): radial nodes l angular nodes a0 the Bohr is most probable radius Sphere Radius rs Prob < 0.05 of max prob for finding electron at r > rs

  19. Chap 5:, 2pz~R20( r )Ypz(, 3pz R31( r )Ypz( Ypz ~ cos( |Ypz|2~ |cos( r  2pz~R20( r )Ypz( One electron orbital

  20. Chap 5:, 2pz~R20( r )Ypz(, 3pz R31( r )Ypz( Ypz ~ cos( |Ypz|2~ |cos( r  L 2pz~R20( r )Ypz(

  21. Chap 5:, 2pz~R20( r )Ypz(, 3pz R31( r )Ypz( 2pz~R20( r )Ypz( 2pz one electron orbital 2px~R21( r )Ypx( 2px one electron orbital 2py~R21( r )Ypy( 2py one electron orbital

  22. Chap 5: Angular Momentum Eigen functions d-orbital L dzz ~ R32( r ) Y20( L r  r  L  dx2 -y2 ~ R32{Y22 +Y2-2}~cos(2) dxy ~ R32{Y22 - Y2-2}~ sin(2)

  23. Chap 5: Aufbau Process; Atomic Ground State Electron Configuration P D P D P P P P P D

  24. Chap 5: Periodic Table reflects the Electron Configuration; Atomic Properties Alkali Metals Rare Gases 2 8 Noble Metals Transition Metals 8 18 18 Halogens Alkaline earth Lanthanides Actinides

  25. Chap 5: Periodic Table reflects the Electron Configuration: ionization Energies X X+ + e E=E(X+) - E(X)=IE1 and X+X2+ + e E=E(X2+) - E(X+)=IE2

  26. Chap 5: Periodic Table reflects the Electron Configuration: ionization Energies

  27. Chap 5: Periodic Table reflects the Electron Configuration: Electron Affinity X + e X-E = E(X-) - E(X)= - EA

  28. Chap. 5:H-atom and One electron Ions Eigen Funct, and Values nlm(r,,) = Rnl( r )Ylm(: Eigen Function : Energy Eigen Values (same as Bohr) Principal quantum number Angular momentum quantum number Magnetic quantum number

  29. Chap 5: Quantum Mechanical Energy levels The Energy Eigen Values are Independent of l and m! Therefore each n level has n, l levels (0,1, ..n-1), each with (2l+1) states and is therefore n2 degenerate. Consequently each (nl) level has (2l+1) m-states and is (2l+ 1) degenerate

  30. Chap 5: Average QM distance of the electron from the Nucleus Chap 5: Average QM distance of the electron from the Nucleus The Average Quantum Mechanicaldistance between the Nucleus and the electron:<rnl> = (a0n2/Z){1+(1/2)[1- l(l+1)2/n2]}.For n>>1 and n~l reduces tothe Bohr Modelrn= (a0n2/Z) is also the most probable distance of the electron from the nucleusVisualizing atomic orbital probability density:http://www.phy.davidson.edu/stuhome/cabell_f/density.html The Average Quantum Mechanicaldistance between the Nucleus and the electron:<rnl> = (a0n2/Z){1+(1/2)[1- l(l+1)2/n2]}.For n>>1 and n~l reduces tothe Bohr Modelrn= (a0n2/Z) is also the most probable distance of the electron from the nucleusVisualizing atomic orbital probability density:http://www.phy.davidson.edu/stuhome/cabell_f/density.html

  31. Vector model of the Spin angular momentum S=1/2 S =1/2 is the total spin quantum number B||z repelled from stronger B-field ms=+1/2 S-spin angular momentum <Sz>=Sz= msh x,y plane <|S|2>=S2= s(s+1)h2 z-axis projection <Sz>=Sz=msh ms=-1/2 attracted to stronger B-field

More Related