1 / 32

Sarah Decato 2/16/2012

Positron Emission Tomography (PET): S ynthesis of short-lived 11 C and 18 F radionuclide tracers. Sarah Decato 2/16/2012. Ostrovsky, G. http :// medgadget.com/2011/06/siemens-biograph-mmr-mrpet-scanner-gets-eu-green-light.html (accessed 1/29/2011). Background O utline.

tyler
Download Presentation

Sarah Decato 2/16/2012

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Positron Emission Tomography (PET):Synthesis of short-lived 11C and 18F radionuclide tracers Sarah Decato 2/16/2012 Ostrovsky, G. http://medgadget.com/2011/06/siemens-biograph-mmr-mrpet-scanner-gets-eu-green-light.html (accessed 1/29/2011).

  2. Background Outline Imaging Modalities PET physics PET radionuclides Tracer parameters Ostrovsky, G. http://medgadget.com/2011/06/siemens-biograph-mmr-mrpet-scanner-gets-eu-green-light.html (accessed 1/29/2011).

  3. Growth of PET Jaroff, L. http://www.time.com/time/magazine/article/0,9171,998685,00.html (accessed 2/10/12).

  4. Imaging Modalities • Anatomical Imaging: Visualization of body structure; can only diagnose structural abnormalities. • X-ray • Computed tomography (CT) • Magnetic resonance imaging (MRI) • Molecular Imaging: Target unique tissues or cell types with specific probes with the aim to monitor and diagnose diseases, study biological processes, evaluate drug efficacy. • Positron emission tomography (PET) • Single-photon emission computed tomography (SPECT) Ametamey, S. M., Chem. Rev. 2008,108, 1501-1516.

  5. Imaging Modalities: PET Advantages CT Overlay PET No imaging “handle” necessary Mass of probe is subtoxicological Beneficial multimodality capability (PET/CT, PET/MRI) Levin, C. S., European Journal of Nuclear Medicine and Molecular Imaging 2005,32, S325-S345., Diagnostic Imaging http://www.diagnosticimaging.com/display/article/113619/1412709?pageNumber=3 (accessed 2/3/2012).

  6. PET Physics: Positron Decay Spontaneous β+ ν positron neutrino Miller, P. W., et al., Angew. Chem. Int. Ed. 2008,47, 8998-9033.

  7. PET Physics: Coincidence Event decaypath ν γ γ β+ photondetection photondetection β- annihilation Miller, P. W., et al., Angew. Chem. Int. Ed. 2008,47, 8998-9033.

  8. PET Radionuclides: Selection aRemaining decay percentage is from electron capture bRemaining decay percentage is from 41% electron capture and 40% β-decay Ametamey, S. M., Chem. Rev. 2008,108, 1501-1516.

  9. PET Physics: Cyclotron Acharged particle moves through a magnetic field The beam travels in a circle and the particle accelerates through the electric field region (gap) Nuclear reaction occurs as the beam hits the target Ametamey, S. M., Chem. Rev. 2008,108, 4036-4036., Encyclopedia Britannica http://www.britannica.com/EBchecked/media/59676/Plan-view-of-a-classical-cyclotron-Subatomic-particles-introduced-into (accessed 2/2/2012).

  10. PET Radionuclides: Synthesis aX(d,n)bY target nucleus product nucleus emitted particle accelerated particle Miller, P. W., et al., Angew. Chem. Int. Ed. 2008,47, 8998-9033.

  11. UW - Madison UW – Madison Cyclotron/PET Research Center http://www.medsch.wisc.edu/cycl/default.html (accessed 2/2/2012).

  12. Tracer Parameters 18FDG • Time • Half-life • Preparation time < 3 half-lives • Transport • Scale (µL – nL) • Modifications to biological properties (18F) • Label position • 2-fluoro-2-deoxy-glucose (FDG) • Radiochemical yield (%RCY) • Specific activity (GBq/µmol) • 74GBq/µmol Miller, P. W., et al., Angew. Chem. Int. Ed. 2008,47, 8998-9033., Zheng, Q.-H., et al., Biomed. Chromatogr. 2005,19, 671-676.

  13. Synthesis Outline • 11C • Radiolabeling precursors • 11CO2 • 11CO • Methylation • 18F • Radiolabeling precursors • Electrophilic fluorination • Nucleophilic fluorination • Iodonium salts • Late stage fluorination Yale School of Medicine http://petcenter.yale.edu/index.aspx (accessed 2/2/2012).

  14. Radiolabeling Precursors: 11C N2 (+O2) N2 (+H2) EOB “wet method” “dry method” 1) LiAlH4 2) HI I2, 720°C Mo, 820°C RMgX AgOTf Pretze, M., et al., Molecules2011,16, 1129-1165., Scott, P. J. H., Angew. Chem. Int. Ed. 2009,48, 6001-6004., Ametamey, S. M., Chem. Rev. 2008,108, 1501-1516., Miller, P. W., et al., Angew. Chem. Int. Ed. 2008,47, 8998-9033.

  15. CO2: Grignard WAY100635 Analog of 5-HT1A receptor antagonist: p-MMPI Hwang, D.-R., et al., Nuc. Med. Biol. 1999,26, 815-819., Lu, S.-Y., et al., J. Label.Compd. Radiopharm. 2003,46, 1249-1259.

  16. CO: Low Solubility • CO does not suffer from significant isotopic dilution • CO is limited by : • Low solubility in organic solvents • Low reactivity at or near atmospheric pressure Audrain, H., et al., Chem. Commun. 2004, 558-559., Långström, B., et al., J. Label. Compd. Radiopharm. 2007,50, 794-810.

  17. CO: Palladium-mediated Stille Palladium-mediated 11C-carbonylation reactions Suzuki Långström, B., et al., J. Label. Compd. Radiopharm. 2007,50, 794-810., Rahman, O., et al., Eur. J. Org. Chem. 2004,2004, 2674-2678., Karimi, F., et al., Eur. J. Org. Chem. 2005,2005, 2374-2378., Hostetler, E. D., et al., Nuc. Med. Biol. 2002,29, 845-848., Rahman, O., et al., Eur. J. Org. Chem. 2004,2004, 474-478.

  18. Simple Methylation 11CH3I from cyclotron Trap [11C]raclopride HPLC Loop [11C]flumazanil Detector O, S, N alkylation Captive solvent method or loops allow for increased reactivity with milder conditions General method under mild conditions Wilson, A. A., et al., Nuc. Med. Biol. 2000,27, 529-532., Cleij, M. C., et al., J. Label. Compd. Radiopharm. 2007,50, 19-24.

  19. Methylation: Stille Cross-coupling FMAU M-TEB ligand (mGluR5) Hosoya, T., et al., Org. Biomol. Chem. 2006,4, 410-415., Samuelsson, L., et al., J. Label. Compd. Radiopharm. 2003,46, 263-272., Hamill, T. G., et al., Synapse 2005,56, 205-216.

  20. Methylation: Suzuki Sanchez-Pernaute, R., et al., NeuroImage2008,42, 248-251., Hostetler, E. D., et al., J. Label. Compd. Radiopharm. 2005,48, 629-634., Miller, P. W., et al., Angew. Chem. Int. Ed. 2008,47, 8998-9033.

  21. Methylation: Transfer Reagent Forngren, T., et al., J. Label. Compd. Radiopharm. 2004,47, 71-78., Huiban, M., et al., Chem. Commun. 2006., 97-99.

  22. 11C Summary 11CO2 is a traditional yet mainly inefficient method to perform 11C-labeling. 11CO is versatile but needs to be modified or trapped to become effectively reactive. Direct methylation can be achieved with captive solvent methods or Pd-mediated cross-couplings with 11CH3I.

  23. Radiolabeling Precursors: 18F Electrophilic Nucleophilic 19F2 K2CO3 H2O/ACN AcOHAcOK “K2.2.2” Schirrmacher, R., et al., Mini-Reviews in Organic Chemistry, 2007,4, 317-329., Miller, P. W., et al., Angew. Chem. Int. Ed. 2008,47, 8998-9033., Pretze, M., et al., Molecules2011,16, 1129-1165.

  24. Electrophilic Fluorination 18F-L-Tyrosine 18F-L-DOPA Miller, P. W., et al., Angew. Chem. Int. Ed. 2008,47, 8998-9033., Hess, E., et al., Appl. Radiat. Isot. 2002,57, 185-191.

  25. Nucleophilic Fluorination FDG SNAr most prevalent 18F labeling technique MPPF Substitutions on heterocylic systems (pyridine) do not require activating groups (Y) Furuya, T., et al., Synthesis 2010,2010, 1804-1821., Ehrenkaufer, R. E., et al., Journal of Nuclear Medicine 1984,25, 333-337., Telu, S., et al., Org. Biomol. Chem. 2011,9, 6629-6638., Hamacher, K., et al., Journal of Nuclear Medicine 1986,27, 235-238.

  26. Iodonium Salts Wang, B., et al., J. Fluorine Chem. 2010,131, 1113-1121., Littich, R., et al., Angew. Chem. Int. Ed. 2012,51, 1106-1109., Ross, T. L., et al., J. Am. Chem. Soc. 2007,129, 8018-8025., Pretze, M., et al., Molecules2011,16, 1129-1165.

  27. Iodonium Salts: Pd Coupling Precursor Stille Suzuki Ross, T. L., et al., J. Am. Chem. Soc. 2007,129, 8018-8025., Schirrmacher, R., et al., Mini-Reviews in Organic Chemistry, 2007,4, 317-329., Pretze, M., et al., Molecules2011,16, 1129-1165.

  28. Late Stage Fluorination: Selectfluor 1 Selectfluorbis(triflate) Littich, R., et al., Angew. Chem. Int. Ed. 2012,51, 1106-1109.

  29. Late Stage Fluorination: Ritter Catalyst 1 fluorodeoxyestrone 1 Lee, E., et al., Science 2011,334, 639-642., Furuya, T., et al., J. Am. Chem. Soc. 2010,132, 3793-3807., Littich, R., et al., Angew. Chem. Int. Ed. 2012,51, 1106-1109.

  30. 18F Summary Electrophilic fluorination results in low specific activity and low selectivity Nucleophilic methods are most common but limited to electron-deficient aromatic systems Iodonium salts allow for versatility and an efficient route to fluoro-iodobenzene, a precursor for Pd-mediated syntheses Current trends aim to develop more selective fluorinating reagents using Selectfluor-based methods and catalyst designs

  31. Future Directions Microfluidics Complete automation Lee, C. C., Science 2005,310, 1793-1796., http://www.gehealthcare.com/euen/fun_img/products/radiopharmacy/products/fastlab-index.html (accessed 2/5/2012).

  32. Acknowledgements • Practice Talk Attendees: Patrick Robichaux Aaron McCoy Ben HaenniAlliceDang Jon JaworskiAndrieIosub Chris Adams Anna Dunn Advisor: Dr. SandroMecozzi Group Members: ElhamNejati Aaron McCoy Dr. Jun-PilJee Will Tucker Ken Simmons Andrew Oskoui Matt Biller Special Thanks: Kat Myhre Joseph Moore

More Related