770 likes | 1.26k Views
Curso de Probabilidad y Estadística Tema: (7) Estadística Descriptiva. Dr. José Antonio Camarena Ibarrola camarena@umich.mx Facultad de Ingeniería Eléctrica. El campo de la Estadística . Recopilación, Presentación, Análisis y
E N D
Curso de Probabilidad y EstadísticaTema: (7) Estadística Descriptiva Dr. José Antonio Camarena Ibarrola camarena@umich.mx Facultad de Ingeniería Eléctrica
El campo de la Estadística • Recopilación, • Presentación, • Análisis y • Uso de Información para resolver problemas, tomar decisiones, hacer estimaciones y diseñar productos y procedimientos
La variabilidad • La Estadística sirve para presentar, describir y entender la variabilidad • Un proceso produce un resultado, al repetirse un proceso, los resultados cambian a pesar de que el proceso se reprodujo aparentemente en las mismas circunstancias.
Población • Colección de mediciones de un universo respecto al cual queremos obtener conclusiones o tomar decisiones. • Ej. Conjunto de valores de consumo de energía (KWH) facturados en el primer bimestre de 2008
Tipos de datos • Datos numéricos (continuos o discretos) • Datos categóricos (Ej. Sexo, marca, ..) • Datos identificadores de unidades
Muestreo de datos Población Muestreo aleatorio Muestra Nota: Si la muestra es igual a la población, al muestreo le llamamos censo
Estadística • Descriptiva. Organización, resumen y presentación de datos • Inferencial. Llegar a una conclusión acerca de la población, el proceso o el modelo de asignación de las variables
Presentación gráfica de la información • Diagrama de puntos • Gráficas de dispersión • Diagramas de tallos y hojas • Histogramas • Diagramas de cajas con bigotes • Gráficas de Pareto • Series de tiempo
* * ** * * * * * * + + + + + + + + + + 16.0 16.5 17.0 17.5 18.0 18.5 * = Mortero modificado + = Mortero sin modificar Diagrama de puntos Ejemplo: Datos de resistencia a la tensión de muestras de mortero Portland (Kg/cm2) con polímero agregado: 16.85 16.40 17.21 16.35 16.52 17.04 16.96 17.15 16.59 16.57 mortero Portland sin modificar: 17.50 17.63 18.25 18.00 17.86 17.75 18.22 17.90 17.96 18.15
Ejemplo: Resistencia a la tensión de 80 muestras de aleación Aluminio-Litio 105 221 183 186 121 181 180 143 97 154 153 174 120 168 167 141 245 228 174 199 181 158 176 110 163 131 154 115 160 208 158 133 207 180 190 193 194 133 156 123 134 178 76 167 184 135 229 146 218 157 101 171 165 172 158 169 199 151 142 163 145 171 148 158 160 175 149 87 160 237 150 135 196 201 200 176 150 170 118 149
Diagrama de tallos y hojas Tallo Hoja Frecuencia 7 6 1 8 7 1 9 7 1 10 5 1 2 11 5 8 0 3 12 1 0 3 3 13 4 1 3 5 3 5 6 14 2 9 5 8 3 1 6 9 8 15 4 7 1 3 4 0 8 8 6 8 0 8 12 16 3 0 7 3 0 5 0 8 7 9 10 17 8 5 4 4 1 6 2 1 0 6 10 18 0 3 6 1 4 1 0 7 19 9 6 0 9 3 4 6 20 7 1 0 8 4 21 8 1 22 1 8 9 3 23 7 1 24 5 1
Tallos y Hojas ordenado Tallo Hoja Frecuencia 7 6 1 8 7 1 9 7 1 10 1 5 2 11 0 5 8 3 12 0 1 3 3 13 1 3 3 4 5 5 6 14 1 2 3 5 8 6 9 9 8 15 0 0 1 3 4 4 6 7 8 8 8 8 12 16 0 0 0 3 3 5 7 7 8 9 10 17 0 1 1 2 4 4 5 6 6 8 10 18 0 0 1 1 3 4 6 7 19 0 3 4 6 9 9 6 20 0 1 7 8 4 21 8 1 22 1 8 9 3 23 7 1 24 5 1
Los datos ordenados 76 87 97 101 105 110 115 118 120 121 123 131 133 133 134 135 135 141 142 143 145 146 148 149 149 150 150 151 153 154 154 156 157 158 158 158 158 160 160 160 163 163 165 167 167 168 169 170 171 171 172 174 174 175 176 176 178 180 180 181 181 183 184 186 190 193 194 196 199 199 200 201 207 208 218 221 228 229 237 245 Son 80 datos, como es un numero par, la mediana será el promedio de los que ocupan los lugares 40 y 41, o sea (160+163)/2=161.5 El primer cuartil es el valor en (0.25)*80+0.5=20.5, es decir, el promedio de los valores en los puestos 20 y 21, o sea (143+145)/2=144 El tercer cuartil es el promedio de los valores en los puestos 60 y 61, es decir, (181+181)/2=181
El rango intercuartil • RIC=Q3-Q1 • Es una medida de dispersión de datos • En el ejemplo anterior: RIC=181-144=37
Tabla de Frecuencias Clase Frecuencia Frec. Relativa Frec. Rel. Acum. 70 a 90 2 0.0250 0.0250 90 a 110 3 0.0375 0.0625 110 a 130 6 0.0750 0.1375 130 a 150 14 0.1750 0.3125 150 a 170 22 0.2750 0.5875 170 a 190 17 0.2125 0.8000 190 a 210 10 0.1250 0.9250 210 a 230 4 0.0500 0.9750 230 a 250 2 0.0250 1.0000
Histograma 70 90 110 130 150 170 190 210 230 250
Cajas con bigotes • Presenta al mismo tiempo una medida de dispersión, de tendencia central y de valores extremos • Se debe determinar la mediana, el primero y el tercer cuartil y los valores máximo y mínimo • Rango Intercuartílico RIC=Q3-Q1
Las gráficas de Caja son útiles para hacer comparaciones Supongamos que un corredor entrena para una determinada carrera y se toman los tiempos que necesita para recorrer los 100m, durante 10 días consecutivos (cada día se toman varios tiempos y se calculan mediana, cuartiles, valores mínimo y máximo) El desplazamiento de las gráficas de caja hacia la izquierda indica que el entrenamiento ha dado resultado, ya que se tardan menos segundos en recorrer la misma distancia, siendo la diferencia entre el máximo y el mínimo menor, como así también la diferencia intercuartílica
Ejemplo En un diario presentan el siguiente gráfico de caja y bigotes. La variable en estudio es “calificación en un examen de ingreso” Teniendo en cuenta esta gráfica indique en forma aproximada: a)¿Qué calificación obtuvo el estudiante con menor nota? b)¿Qué calificación obtuvo el estudiante con mayor nota? c)¿Cuál es el primer cuartil? d)¿Cuál es el tercer cuartil? e)¿Cuál es la mediana?
Ejercicio En un aeropuerto se registran los vuelos que arriban en una semana determinada y los datos se vuelcan en la siguiente tabla: Ordene en forma creciente y calcule mediana y cuartiles. ¿Cuántos vuelos hay el día que hay menos vuelos? ¿Cuántos vuelos hay el día que hay más vuelos? Represente mediante un diagrama de caja y bigotes.
Diagrama de Pareto • Se ordenan la frecuencias en orden descendente • La escala horizontal no es necesariamente numérica • La línea indica los porcentajes acumulados • Útiles en análisis de datos de defectos en procesos de producción • Muy usada en los programas de mejoramiento de calidad pues permite a los ingenieros concentrarse en los problemas realmente importantes
Descripción numérica de los datos • Media • Varianza • Moda • Mediana • Sesgo • Curtosis • Covarianza • Factor de correlación
La media La media muestral La media de la población
La varianza La varianza muestral La varianza de la población
Varianzas muestrales, Covarianza muestral y correlación muestral
La cuasi-varianza muestral Esta medida de dispersión tiene la propiedad de insesgadez
La moda • El valor de mayor frecuencia • Si hay dos, la distribución es bi-modal
El rango dinámico • La diferencia entre el máximo y el mínimo de los valores de la población
Regresión lineal • Es una técnica estadística para investigar la relación entre dos o mas variables • Se utiliza para realizar predicciones de una variable (respuesta) en términos de otras (regresivas) • El término “regresión” fue acuñado por el frances Francis Galton quien lo usó en sus estudios de la herencia • La regresión simple o bivariada consiste de hacer predicciones de una variable en términos de otra solamente • En la regresión múltiple, la predicción se hace tomando en cuenta a varias variables
Regresión lineal simple • Asumimos que la relación entre la variable respuesta y la variable regresiva es una línea recta • Cada observación cumple • La suma de los cuadrados de los errores es
Regresión lineal simple • Para minimizar el error derivamos e igualamos a cero respecto a • De la misma manera derivando respecto a • Simplificando estas dos ecs:
Regresión lineal simple • Reconociendo que • La ecuación • Se convierte en • Esto lo reemplazamos en • Para obtener
Regresión lineal simple • De la ecuación • Despejamos • Para obtener
Regresión lineal simple • Es lo mismo que
Ejemplo • Un Ingeniero está investigando el efecto de la temperatura sobre el rendimiento de un producto, sus experimentos arrojan los siguientes resultados
La gráfica de dispersión • Esta gráfica nos indica una fuerte suposición de que la relación entre las dos variables puede ser lineal
Perspectiva histórica de la teoría de la fiabilidad • Estudios para poder evaluar la mortalidad derivada de las epidemias. • Compañías de seguros, para determinar los riesgos de sus pólizas de seguro de vida. • Tablas de vida: La primera tabla de vida data de 1693 y es debida a Edmund Halley Orígenes: se utilizaban los métodos actuariales tanto para estimar la supervivencia de pacientes sometidos a distintos tratamientos como para estudiar la fiabilidad de equipamientos, en particular de los ferrocarriles. Siglo XX: En 1939 Waloddi Weibulll, cuando era profesor del Royal Institute of Technology en Suiza, propuso una distribución para describir la duración de materiales, que más tarde llevaría su nombre. En 1951 Epstein y Sobel empezaron a trabajar con la distribución exponencial como modelo probabilístico para estudiar el tiempo de vida de dispositivos
Fiabilidad y Mantenimiento Desde el punto de vista de la ingeniería, la fiabilidad es la probabilidad de que un aparato, dispositivo o persona desarrolle una determinada función bajo condiciones fijadas durante un periodo de tiempo determinado. • La confiabilidad de un elemento puede ser caracterizada a través de distintos modelos de probabilidades. • Podemos describir varias distribuciones de fallas comunes y ver qué podemos aprender de ellas para gestionar los recursos de mantenimiento. Convirtiendo el conocimiento ganado de ellas en acciones PROACTIVAS de Mantenimiento y aplicarlas en el Diseño.
Herramientas de Fiabilidad Se estudia mediante el análisis estadístico de datos de supervivencia. ISO define fiabilidad como la probabilidad de que un componente o sistema, desarrolle durante un periodo de tiempo dado, la tarea que tiene encomendada sin fallos, y en las condiciones establecidas. • Estudiar Duraciones de Procesos que es común en muchas ciencias: • Duración de un componente (Fiabilidad) • Supervivencia de un paciente a un tratamiento (Medicina) • Duración del desempleo (Economía) • Edad de las personas (Demografía y sociología)