1 / 24

JOLANTA BRODZICKA

Doubly charmed B decays. B  D(*) D(*) K. JOLANTA BRODZICKA. ICPV Meeting December 12, 2002. Institute of Nuclear Physics, Krakow. Plan. b  c c s transition “ wrong-sign” D production physics motivations analysis details

Download Presentation

JOLANTA BRODZICKA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Doubly charmed B decays B  D(*) D(*) K JOLANTA BRODZICKA ICPV Meeting December 12, 2002 Institute of Nuclear Physics, Krakow

  2. Plan • b  c c stransition “wrong-sign” D production • physics motivations • analysis details • (very) preliminary results ( for ~78 fb-1 ) • future plan JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  3. Mechanisms of BD(*)D(*)K decays phase-space suppressed b  cW - c c s + dd (uu) pair creation ( I ) through external W-emission amplitudes B+ D(*)0 D(*)+ K0 B0 D(*)- D(*)0 K+ ( II ) internal W-emission amplitudes (color-suppressed) B+ D(*)+ D(*)- K+ B0 D(*)0 D(*)0 K0 ( III ) external +internal W-emission amplitudes B+ D(*)0 D(*)0 K+ B0 D(*)- D(*)+ K0 22 decay modes + c.c JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  4. Physics motivations • charm counting puzzle B  D(*) D(*) K : significant (~1/2) contribution to b ccs transitions precise BF’s measurements needed • B0 D(*) D(*) K0Sto probe both sin2 and cos2 small penguin pollution expected • possible resonant contribution cc-bar states ((3770), (4040), …) upper-vertex D(*)K system vector-dominance model 1+ 1- particles easily produced from W-vertex (because of V-A)  quasi-2-body B decays rather than 3-body ( e.g high BF`s for B   D(*), a1 (1260) D(*), Ds*D ) expecteddecays to orbitally-excited Ds mesons followed by Ds** D(*)K p-wave excited (c s) states : according to HQS 2 doublets : jP = 1/2+ JP = (0 + , 1+ ) D*s0D*s1 not seen, wide jP = 3/2+ JP = (1 + , 2+ ) probably Ds1±(2536) DsJ ±(2573) narrow JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  5. Analysis details • at least 5 good tracks : abs(IP_dz)< 5cm abs(IP_dr)< 0.4cm • R2< 0.3 • K± : P(K/) > 0.6± : P(/K) > 0.6 electron veto: el_id < 0.95 • K0Sabs( M(+ -) - MKs ) < 15 MeV only good_Ks • 0 E > 50 MeV abs( M( ) -M0 ) < 15MeV • D±, D0 and D*±, D*0 reconstruction ( N(D)>1 : p(D) < 2 GeV ) • B±, B0 reconstruction : all possible (22 + c.c) physical combinationsD(*)D(*)K B vertex fit: with IP and B lifetime constraints “shape” cuts: abs(cosTHR)<0.8 abs(cosPROD)<0.8 Mbc > 5.2GeV -0.40 < E < 0.35 GeV JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  6. D(*) plots for ~ 11fb-1 (exp17) D0reconstruction for skimmed sample (with DDK candidate ) S=93K S=22K S=101K BF ~ 28% • vertex fit (refit 0 ) • M (DREC) cut: ± 20MeV • (D0 K0 : ± 50MeV) • constraint_mass fit D0 K D0 K3 D0 K0 (doesn`t applied for these plots) S=18K S=10K S=4K D0 KsKK D0 Ks D0 KK JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  7. D(*) plots for ~ 11fb-1 (exp17) D± reconstruction S=59K S=6.5K BF ~ 15% • reconstruction procedure • like in D0 case D±Ks D±K S=1.7K S=4.4K S=10K D±KsK D±KK D±Ks0 D± JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  8. D(*) plots for ~ 11fb-1 (exp17) D*± reconstruction S=6K S=9K S=9.5K D*±  D0± BF ~ 68% (D*±  D± 0hopeless ) • slow_ ID: P(/K) > 0.1 • vertex fit • (constraints :IP, B) • abs(M(D*)-M(D)-mPDG)< 2.5MeV D0 K D0 K3 D0 K0 S=1.5K S=0.8K S=0.25K D0 KsKK D0 KK D0 Ks JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  9. D(*) plots for ~ 11fb-1 (exp17) D*0 reconstruction • vertex fit • (constraints :IP, B) • refit 0 (vtx_constraint) • abs(M(D*)-M(D)-mPDG)< 5MeV D*0  D00 BF ~ 62% S=1.5K S=0.4K S=3.5K D0 Ks D0 K0 D0 K JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  10. Multi-candidates events treatment • more than 1 candidates in the same B sub-mode • multi D(*) candidates per event • D(*)D(*) combinations with different K`s ~3. B cand per event ( all sub-modes ) D, D* probabilities (LR): S(MD) S(MD), B(MD) parameterization from MD fit LR_D (MD) = + S(MD) B(MD) S(MD*) S(MD*), B(MD*) parameterization from MD*fit LR_D*(MD*) = + S(MD*) B(MD*) JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  11. Choice of the best B candidate B probability (LR_B) ( for each B decay sub-mode separately ) LR_B = LR_D(*) × LR_D(*) • best B candidate : with max LR_B • equal LR_B case ( B`s differ only in K ) : • larger K±_ID or better K0S mass candidate chosen S/(S+B) choice method “combines” both criteria: (M-MPDG)/ and S/B ratio JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  12. LR_B cut efficiency LR_B cut: good for background reduction and s /b ratio improvement Background reduction (DATA) all Efficiency reduction (signal MC ) LR_D1 * LR_D2 cut LR_D1 * LR_D2 cut Background: B±  D0 D0B K± sideband Signal MC: B±  D0 D0B K± for all D0D0B combinations JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  13. comb. bckg B±  D0 D0B K± D0, D0  K phase space N/20MeV MASS_D0D0B for signal-box events E Mbc vs. E Mbc Mbc Mbc  lost 2 lost S=16±4 eff~11% S=87±10 S=157±12 JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  14. B±  D0 D0B K±  lost Mbc Mbc Mbc 2 lost E LR_B cut 0.05 S=258±20 S=557±28 S=36±17 0.1 S=16±5 S=152±14 S=273±17 S=9±12 S=86±10 S=161±12 0.2 JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  15. LR_B > 0.02 B±  D+ D- K± S=28±7 Mbc E S=45±11 Mbc  lost JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  16. B0  D0 D- K+ LR_B > 0.02 S=40±8 Mbc E S=161±16 S=144±16 Mbc Mbc 2 lost  lost JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  17. B0  D0 D0B Ks (color suppressed channel ) LR_B > 0.01 E S=3±3 S=62±10 S=104±14 Mbc Mbc Mbc  lost 2 lost JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  18. LR_B > 0.005 B0  D*± D0 K± Mbc vs. E E S=47±7 S=137±12 Mbc Mbc  lost JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  19. B0  D*± D0 Ks LR_B > 0.001 Mbc vs. E E S=12±4 S=37±6 Mbc Mbc  lost JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  20. LR_B > 0.002 B0  D*0 D- K+ Mbc vs. E E Mbc Mbc  lost S=25±6 S=48±10 JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  21. LR_B > 0.01 B±  D*0 D0 K± for signal-box events for lost -pion box events N/40MeV MASS_D*K MASS_D*K D*0K+ D*0K- E right flavor comb. wrong flavor comb. D*0K+ D*0K- S=42±9 S=98±13 Mbc Mbc  lost JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  22. LR_B > 0.0 B0  D*±D*0 K± S=18±5 Mbc E JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  23. Future Plan • more D(*)D(*)K channels will be analyzed • more attention for resonant structure exploration • the stuff for 2-dim likelihood fits • MC studies for background investigation • BF’s determination • incorporate D(*)D(*)K* channels JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

  24. LR_D*± vs. M plots LR_D0 vs. D_mass plots D0 K D0 K3 D0 K0 D0 Ks D0 KK D0 KsKK JOLANTA BRODZICKA B  D(*) D(*) K December 12, 2002

More Related