1 / 24

MECHANIKA 2

MECHANIKA 2. Wykład Nr 14. Teoria uderzenia. DYNAMIKA PUNKTU NIESWOBODNEGO. Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamy punktem nieswobodnym.

unity-pope
Download Presentation

MECHANIKA 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MECHANIKA 2 Wykład Nr 14 Teoria uderzenia

  2. DYNAMIKA PUNKTU NIESWOBODNEGO Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamypunktem nieswobodnym. Więzy oddziaływają na poruszający się punkt pewnymi siłami, które nazywamy reakcjami więzów. Istnienie więzów powoduje więc pojawienie się w równaniach rucha dodatkowych sił – reakcji więzów. Równanie ruchu przyjmie postać (1)

  3. Ruch punktu po gładkiej równi pochyłej Równania ruchu: Po przekształceniu otrzymujemy:

  4. Ruch wahadła matematycznego Równania ruchu: Rys. 7 gdzie: Po podstawieniu:

  5. Przy małych wychyleniach wahadła sin =  , wówczas więc równanie ruchu przybiera postać: Jest to równanie ruchu harmonicznego prostego. Przypomnijmy, że równanie ruchu harmonicznego prostego ma postać: Zatem dla wahadła:

  6. Równanie ruchu ma postać: Po scałkowaniu względem czasu otrzymamy wzór na prędkość: Warunek początkowy: dla

  7. Po wyznaczeniu stałej c i podstawieniu do wzoru na v: Ponieważ to Załóżmy, że dla t = 0, wówczas:

  8. Zderzenie proste środkowe Zderzenie zachodzi w przypadku działania na siebie dwu ciał siłą o skończonej wartości w bardzo krótkim przedziale czasu. Zderzenie środkowe charakteryzuje się tym, że normalna do płaszczyzny styku w punkcie styku obu ciał przechodzi przez środki masy tych ciał. Rys. 2

  9. Okresy zderzenia W procesie zderzenia rozróżniamy dwa charakterystyczne okresy: a)        - pierwszy okres: od chwili zetknięcia się ciał aż do chwili największego zbliżenia ich środków mas, przy równoczesnym odkształcaniu się obu ciał, b)       - drugi okres: od chwili rozpoczęcia oddzielania się obu mas.

  10. Pęd zderzających się mas Rys. 2 Pęd przed po zderzeniu jest taki sam Stąd – wspólna prędkość obu mas przy końcu pierwszego okresu.

  11. Energia kinetyczna W wyniku odkształcania się ciał przy zderzeniu występuje zmiana energii kinetycznej układu w pewnej jej części na pracę odkształcenia. Strata ta może być pozorna lub rzeczywista, w zależności od tego, czy zostanie zwrócona w drugim okresie zderzenia. Oznaczmy ją przez (23) Uwzględniając wzór otrzymamy (23a)

  12. Pęd układu w drugim okresie zderzenia Przechodząc do drugiego okresu zauważamy, że obowiązuje nadal zasada zachowania pędu badanego układu, czyli że (24)

  13. Zderzenie sprężyste i plastyczne Prędkości oraz zależeć będą od tego, czy strata energii kinetycznejzostała: a) zwrócona w 100% (zderzenie ciał doskonale sprężystych), b) pochłonięta w 100% (zderzenie ciał idealnie plastycznych), c) pochłonięta częściowo (zderzenie ciał rzeczywistych).

  14. Współczynnik zderzenia (25) przy czym oczywiście Wartości graniczne współczynnikaodpowiadają: dla ciała idealnie sprężystego, dla ciała idealnie plastycznego.

  15. Uwzględniając równania (24) i (25) otrzymamy po podstawieniu i przekształceniu Prędkości po zderzeniu (26) Dla zderzenia ciał idealnie sprężystych (27)

  16. Dla zderzenia ciał idealnie plastycznych (28) Rzeczywista strata energii kinetycznej Rzeczywista strata energii kinetycznej wynosi Po podstawieniu wartości oraz ze wzoru (26) otrzymamy

  17. ZDERZENIE PROSTE ŚRODKOWE ORAZ UKOŚNE ŚRODKOWE Charakterystyczne przypadki: 1. (ciało doskonale sprężyste). Ze wzorów (27) otrzymamy: Po zderzeniu nastąpiła więc wymiana prędkości pomiędzy obiema masami. 2. , (nieruchoma ściana), . Ze wzorów (27) otrzymamy: Masam1odbija się z tą samą prędkością.

  18. ZDERZENIE PROSTE ŚRODKOWE ORAZ UKOŚNE ŚRODKOWE 3. , (nieruchoma ściana), (ciało rzeczywiste). Wykorzystując wzory (26) napiszemy: Masam2odbije się z prędkością zmniejszoną o k . Przypadek ten podaje zarazem prosty sposób wyznaczania współczynnika zderzenia k. Jak wiadomo bowiem z kinematyki, ciało spadające z wysokości H na stałą podstawę ma w początkowej chwili zderzenia prędkość . Po odbiciu wznosi się na wysokość h,czyli przy końcu drugiego okresu zderzenia miało ono prędkość . Ponieważ (pomijając znak minus, gdyż interesuje nas tylko moduł), zatem k =

  19. ZDERZENIE PROSTE ŚRODKOWE ORAZ UKOŚNE ŚRODKOWE Przejdźmy teraz do omówienia zderzenia ukośnego środkowego (rys. 3). Rozkładamy wektory prędkości na składowe normalne i styczne do płaszczyzny styku Rys. 3

  20. ZDERZENIE PROSTE ŚRODKOWE ORAZ UKOŚNE ŚRODKOWE Jeżeli pominiemy straty tarcia przy zderzeniu i możliwości, ewentualnych obrotów mas (przyjęto je jako punkty materialne) w wyniku na ogół różnych wartości składowych stycznych oraz (przyjmując idealnie gładkie powierzchnie styku mas), to w wyniku zderzenia zmienią się tylko składowe normalne. Do oceny zmian składowych normalnych wykorzystamy wzory (26), wprowadzając jedynie odpowiednie wskaźniki n, składowe zaś styczne pozostaną bez zmiany, czyli: oraz Ostatecznie składając wektorowo otrzymamy po zderzeniu

  21. Oddziaływanie strumienia padającego na przegrodę Do wyznaczenia reakcji przegrody na działanie strumienia, padającego pod kątem (rys. 4), wykorzystamy zasadę pędu i impulsu według wzoru Rys. 4 Załóżmy, że dane są ponadto przekrój strumienia A, gęstość ρ(niezmienna w czasie) oraz średnia prędkość strumienia v.

  22. Oddziaływanie strumienia padającego na przegrodę Wczasie dt wystąpi przemieszczenie przekroju ab w położenie a'b' (rys. 4) o od vdt. Równocześnie strumień rozdzielając się na przegrodzie przemieści się w swych strugach z położeń ef w e'f' oraz z położeń cd w c'd' (rys. 4). Zauważmy, że kierunki wektorów prędkości tych rozdzielonych na przegrodzie strug są przeciwne i styczne do przegrody. Rys. 4

  23. Oddziaływanie strumienia padającego na przegrodę Zgodnie więc z zasadą pędu i impulsu (19) napiszemy rzutując wektory pędów pulsu na oś , prostopadłą do przegrody

  24. Oddziaływanie strumienia padającego na przegrodę oraz Gdyż wektory pędów tych strug są styczne do przegrody, zatem Stąd ostatecznie otrzymujemy reakcję przegrody w kierunku osi

More Related