1 / 37

Reconocimiento de hablante

Reconocimiento de hablante. Speaker recognition: a tutorial, J, P, Campbell, Proc IEEE 85(9) pp.1437 Recent advances in automatic speaker authentication, Q. Li, B.H. Juang, C.H. Lee, Q. Zhou, F.K. Soong, IEEE Robotics & Automation Magazine, (march 1999) 6(1)pp.24-34. Definición.

urania
Download Presentation

Reconocimiento de hablante

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reconocimiento de hablante Speaker recognition: a tutorial, J, P, Campbell, Proc IEEE 85(9) pp.1437 Recent advances in automatic speaker authentication, Q. Li, B.H. Juang, C.H. Lee, Q. Zhou, F.K. Soong, IEEE Robotics & Automation Magazine, (march 1999) 6(1)pp.24-34 identificacion hablante

  2. Definición • Reconocimiento del hablante (Speaker recognition) • Es el uso de una máquina para reconocer a una persona a partir de una frase hablada. • Verificación, Automated Speaker Verification (ASV): • autentificación de la identidad declarada por una persona en base al análisis de la voz. • La decisión es binaria: aceptación o rechazo. • Identificación, Automated Speaker Identification (ASI): • No existe declaración a priori de la identidad y el sistema decide cual es la persona o su grupo, o si la persona es desconocida. identificacion hablante

  3. Dependiente de texto: el usuario debe declamar una frase que se le indica. identificacion hablante

  4. Esquema de sistema de verificación El usuario presenta una tarjeta inteligente encriptada que contiene su información de identidad. Intenta ser autentificado pronunciando una frase indicada en el microfono. Existe un balance entre precisión y duración de la sesión. Entra también ruido y versiones retrasadas de su voz por las superficies reflectantes acústicas. identificacion hablante

  5. Fuentes de error en sistemas de verificación del hablante Mala pronunciación de las frases Estados emocionales Posición del micro Acústica de la habitación Diferentes microfonos Enfermedades Envejecimiento Motivación para ASV: es el sistema más económico, y potencialmente omnipresente a través del teléfono, es un sistema biométrico (inherente a la persona), se puede hacer robusto al ruido y variaciones de canal, usuario y falsificaciones. identificacion hablante

  6. Adquisición: Señal analógica suavizada (antialiasing) digitalizada con un A/D 12-16 bits a 8000-20.000 muestras por seg. Fases generales 1 Adquisición digital de la voz 2 Extracción de características 3 Emparejamiento de patrones 4 Realización de la decisión de aceptación rechazo 5 Registro (enrollment) identificacion hablante

  7. identificacion hablante

  8. identificacion hablante

  9. Base de datos de entrenamiento y test de sistemas de reconocimiento del hablante, controlada científicamente, alta calidad. Las entradas están digitalizadas de forma estándar. Realizada en 1990 por ITT. Es la referencia para sistemas en entornos de tipo oficina. identificacion hablante

  10. Producción de la voz en el tracto vocal: Faringe laríngea, faringe oral, cavidad oral, faringe nasal, cavidad nasal. Excitación: fonación, susurro, fricación, compressión, vibración Modulación: el tracto vocal modula la onda sonora alterandola por sus resonancias. Características dependientes del hablante: las que se refieren a la estructura física particular del tracto vocal más las aprendidas identificacion hablante

  11. Extracción de características • Predicción lineal (LP) • Impone un modelo lineal de la señal. • Los coeficientes de este modelo lineal se utilizan como características para el reconocimiento. identificacion hablante

  12. Modelo lineal de la señal que relaciona el input actual un con los inputs recientes. Predicción de la señal Error de predicción o residual Criterio del minimo error cuadrático Que se minimiza buscando identificacion hablante

  13. La condición de minimo resulta en las ecuaciones Correlación de lag t Ecuación de Yule que da los coeficientes del modelo de regresión (predicción) lineal en función de las correlaciones de la señal. identificacion hablante

  14. Método recurrente de Durbin para resolver las ecuaciones de Yule Representación de la señal en térmimos de la predicción lineal y el error de predicción. identificacion hablante

  15. Si una señal de voz se ajusta al modelo lineal dado, los resifuales forman un tren de pulsos que se repiten a la tasa de la vibración de las cuerdas vocales. Los máximos de los errores de predicción ocurren a la tasa de vibración de las cuerdas vocales La detección de los máximos de error de predicción se puede utilizar como método de detección de “pitch”. identificacion hablante

  16. Características • Se pueden calcular a partir de los coeficientes de la predicción lineal • Coeficientes de reflexión: coinciden con los ki intermedios del método de Durbin • Ratios log-area • Frecuencias LSP • LP cepstrum identificacion hablante

  17. Ratios Log-area: se basan en el modelado del tracto vocal como una serie de tubos cilindricos. Dadas unas condiciones de contorno, los coeficientes de reflexión corresponden a relaciones entre las areas de los cilindros consecutivos No existe biunicidad de areas y señal producida, por lo que no existe garantía de emparejamiento. identificacion hablante

  18. Condiciones de contorno: Glotis cerrada y un area grande tras los labios. Coeficientes de reflexión en términos de las areas de los cilindros Los LAR logaritmos de los ratios entre areas consecutivas se expresan en términos de los coeficientes de reflexión: identificacion hablante

  19. LSP: linear spectra prediction. Se basa en la transformación del sistema lineal dado por la predicción lineal. Las raíces se descomponen en polinomios auxiliares Los LSP son los ceros de P(z) y Q(z). Satisfacen una propiedad de entrelazado: identificacion hablante

  20. Coeficientes cepstrales • Cálculo de los coeficiontes Mel Cepstrum • Extraer una ventana de la señal • Hace la FFT • Calcula la magnitud • Calcula el log • Transforma las frecuencias de acuerdo a la escala mel, ajustada a la percepción humana. • Obtiene la FFT inversa. identificacion hablante

  21. identificacion hablante

  22. Selección de características • PCA principal component analysis: reducción dimensional que mantiene la varianza de los datos, • no parece apropiado para speaker recognition dado que es un problema de discriminación y no de representación • Factor analysis: reducción que mantiene la correlación entre los datos. identificacion hablante

  23. La transformación lineal de un vector aleatorio con distribución gausiana sigue siendo gausiana La proyección lineal puede permitir la discriminación lineal de las clases o minimizar el error de la discriminación lineal. identificacion hablante

  24. Casos en los que el discriminante de Fisher no es de utilidad para determinar las características más apropiadas para la discriminación identificacion hablante

  25. Distancia de Kullback-Leibler, divergencia directa o discriminación entre clases La divergencia simétrica define la información total para discriminar entre las clases En el caso de distribuciones normales queda: identificacion hablante

  26. Distancia de Bhattacharyya entre dos clases con distribución normal, relaciona las matrices de covarianza y las medias identificacion hablante

  27. Pattern matching • Template models: el resultado es una distancia a los patrones almacenados. • Stochastic models: devuelve la verosimilitud de la pertenencia a una clase • Para aproximar la verosimilitud en el caso de los templates se puede utilizar un modelo exponencial identificacion hablante

  28. Dynamic Time Warping: aplicación de la programación dinámica al emparejamiento de patrones, para tratar de emparejar los patrones a pesar de las variaciones temporales identificacion hablante

  29. Nearest neighbor: se almacenan todas las instancias, para un test se evalúan los DTW con cada patrón y se promedian las distancias correspondientes al mismo individuo. identificacion hablante

  30. Modelos estocásticos • Se plantea el problema de emparejamiento de patrones como la evaluación de la verosimilitud de una observación dado un modelo identificacion hablante

  31. HMM Hidden Markov Models Las observaciones son funciones probabilísticas del estado del sistema, el cual no es observable (hidden). identificacion hablante

  32. Clasificación y teoría de la decisión • Dado un valor de emparejamiento entre el input y un modelo de la voz del hablante, la decisión de verificación consiste en decidir si aceptar o rechazar, continuar intentando o dar por finalizado el tiempo (time-out). identificacion hablante

  33. Test de hipótesis para determinar la verificación de un usuario. H0 impostor, H1 auténtico identificacion hablante

  34. El ratio de verosimilitud basado en la teoría de la decisión bayesiana con costos idénticos resulta ser: La probabilidad condicional de la hipótesis pA(z|H1) para el hablante A se estima usando sus scores y su modelo. La probabilidad condicional de la hipótesis nula pA(z|H0) se estima utilizando los scores de otros hablantes sobre el modelo del hablante A. La decisión bayesiana busca la minimización del error dado por el solapamiento de las pdf’s identificacion hablante

  35. Decisión bayesiana de mínimo error El umbral T se escoge de diversas maneras 1 de acuerdo a una estimación de los ratios de las probabilidades a priori 2 para que satisfaga un criterio fijo de falsa aceptación (FA) o falso rechazo (FR) 3 buscando un ratio FA/FR deseado identificacion hablante

  36. Curva ROC relaciona los tipos de error con el umbral de decisión. Se escoge el umbral de decisión que da la misma tasa de error FA y FR (equal error rate) (el óptimo ideal es el origen) identificacion hablante

  37. Estructura de un sistema de identificación del hablante extracción de características selección de características: solo fonadas identificacion hablante

More Related