370 likes | 543 Views
Reconocimiento de hablante. Speaker recognition: a tutorial, J, P, Campbell, Proc IEEE 85(9) pp.1437 Recent advances in automatic speaker authentication, Q. Li, B.H. Juang, C.H. Lee, Q. Zhou, F.K. Soong, IEEE Robotics & Automation Magazine, (march 1999) 6(1)pp.24-34. Definición.
E N D
Reconocimiento de hablante Speaker recognition: a tutorial, J, P, Campbell, Proc IEEE 85(9) pp.1437 Recent advances in automatic speaker authentication, Q. Li, B.H. Juang, C.H. Lee, Q. Zhou, F.K. Soong, IEEE Robotics & Automation Magazine, (march 1999) 6(1)pp.24-34 identificacion hablante
Definición • Reconocimiento del hablante (Speaker recognition) • Es el uso de una máquina para reconocer a una persona a partir de una frase hablada. • Verificación, Automated Speaker Verification (ASV): • autentificación de la identidad declarada por una persona en base al análisis de la voz. • La decisión es binaria: aceptación o rechazo. • Identificación, Automated Speaker Identification (ASI): • No existe declaración a priori de la identidad y el sistema decide cual es la persona o su grupo, o si la persona es desconocida. identificacion hablante
Dependiente de texto: el usuario debe declamar una frase que se le indica. identificacion hablante
Esquema de sistema de verificación El usuario presenta una tarjeta inteligente encriptada que contiene su información de identidad. Intenta ser autentificado pronunciando una frase indicada en el microfono. Existe un balance entre precisión y duración de la sesión. Entra también ruido y versiones retrasadas de su voz por las superficies reflectantes acústicas. identificacion hablante
Fuentes de error en sistemas de verificación del hablante Mala pronunciación de las frases Estados emocionales Posición del micro Acústica de la habitación Diferentes microfonos Enfermedades Envejecimiento Motivación para ASV: es el sistema más económico, y potencialmente omnipresente a través del teléfono, es un sistema biométrico (inherente a la persona), se puede hacer robusto al ruido y variaciones de canal, usuario y falsificaciones. identificacion hablante
Adquisición: Señal analógica suavizada (antialiasing) digitalizada con un A/D 12-16 bits a 8000-20.000 muestras por seg. Fases generales 1 Adquisición digital de la voz 2 Extracción de características 3 Emparejamiento de patrones 4 Realización de la decisión de aceptación rechazo 5 Registro (enrollment) identificacion hablante
Base de datos de entrenamiento y test de sistemas de reconocimiento del hablante, controlada científicamente, alta calidad. Las entradas están digitalizadas de forma estándar. Realizada en 1990 por ITT. Es la referencia para sistemas en entornos de tipo oficina. identificacion hablante
Producción de la voz en el tracto vocal: Faringe laríngea, faringe oral, cavidad oral, faringe nasal, cavidad nasal. Excitación: fonación, susurro, fricación, compressión, vibración Modulación: el tracto vocal modula la onda sonora alterandola por sus resonancias. Características dependientes del hablante: las que se refieren a la estructura física particular del tracto vocal más las aprendidas identificacion hablante
Extracción de características • Predicción lineal (LP) • Impone un modelo lineal de la señal. • Los coeficientes de este modelo lineal se utilizan como características para el reconocimiento. identificacion hablante
Modelo lineal de la señal que relaciona el input actual un con los inputs recientes. Predicción de la señal Error de predicción o residual Criterio del minimo error cuadrático Que se minimiza buscando identificacion hablante
La condición de minimo resulta en las ecuaciones Correlación de lag t Ecuación de Yule que da los coeficientes del modelo de regresión (predicción) lineal en función de las correlaciones de la señal. identificacion hablante
Método recurrente de Durbin para resolver las ecuaciones de Yule Representación de la señal en térmimos de la predicción lineal y el error de predicción. identificacion hablante
Si una señal de voz se ajusta al modelo lineal dado, los resifuales forman un tren de pulsos que se repiten a la tasa de la vibración de las cuerdas vocales. Los máximos de los errores de predicción ocurren a la tasa de vibración de las cuerdas vocales La detección de los máximos de error de predicción se puede utilizar como método de detección de “pitch”. identificacion hablante
Características • Se pueden calcular a partir de los coeficientes de la predicción lineal • Coeficientes de reflexión: coinciden con los ki intermedios del método de Durbin • Ratios log-area • Frecuencias LSP • LP cepstrum identificacion hablante
Ratios Log-area: se basan en el modelado del tracto vocal como una serie de tubos cilindricos. Dadas unas condiciones de contorno, los coeficientes de reflexión corresponden a relaciones entre las areas de los cilindros consecutivos No existe biunicidad de areas y señal producida, por lo que no existe garantía de emparejamiento. identificacion hablante
Condiciones de contorno: Glotis cerrada y un area grande tras los labios. Coeficientes de reflexión en términos de las areas de los cilindros Los LAR logaritmos de los ratios entre areas consecutivas se expresan en términos de los coeficientes de reflexión: identificacion hablante
LSP: linear spectra prediction. Se basa en la transformación del sistema lineal dado por la predicción lineal. Las raíces se descomponen en polinomios auxiliares Los LSP son los ceros de P(z) y Q(z). Satisfacen una propiedad de entrelazado: identificacion hablante
Coeficientes cepstrales • Cálculo de los coeficiontes Mel Cepstrum • Extraer una ventana de la señal • Hace la FFT • Calcula la magnitud • Calcula el log • Transforma las frecuencias de acuerdo a la escala mel, ajustada a la percepción humana. • Obtiene la FFT inversa. identificacion hablante
Selección de características • PCA principal component analysis: reducción dimensional que mantiene la varianza de los datos, • no parece apropiado para speaker recognition dado que es un problema de discriminación y no de representación • Factor analysis: reducción que mantiene la correlación entre los datos. identificacion hablante
La transformación lineal de un vector aleatorio con distribución gausiana sigue siendo gausiana La proyección lineal puede permitir la discriminación lineal de las clases o minimizar el error de la discriminación lineal. identificacion hablante
Casos en los que el discriminante de Fisher no es de utilidad para determinar las características más apropiadas para la discriminación identificacion hablante
Distancia de Kullback-Leibler, divergencia directa o discriminación entre clases La divergencia simétrica define la información total para discriminar entre las clases En el caso de distribuciones normales queda: identificacion hablante
Distancia de Bhattacharyya entre dos clases con distribución normal, relaciona las matrices de covarianza y las medias identificacion hablante
Pattern matching • Template models: el resultado es una distancia a los patrones almacenados. • Stochastic models: devuelve la verosimilitud de la pertenencia a una clase • Para aproximar la verosimilitud en el caso de los templates se puede utilizar un modelo exponencial identificacion hablante
Dynamic Time Warping: aplicación de la programación dinámica al emparejamiento de patrones, para tratar de emparejar los patrones a pesar de las variaciones temporales identificacion hablante
Nearest neighbor: se almacenan todas las instancias, para un test se evalúan los DTW con cada patrón y se promedian las distancias correspondientes al mismo individuo. identificacion hablante
Modelos estocásticos • Se plantea el problema de emparejamiento de patrones como la evaluación de la verosimilitud de una observación dado un modelo identificacion hablante
HMM Hidden Markov Models Las observaciones son funciones probabilísticas del estado del sistema, el cual no es observable (hidden). identificacion hablante
Clasificación y teoría de la decisión • Dado un valor de emparejamiento entre el input y un modelo de la voz del hablante, la decisión de verificación consiste en decidir si aceptar o rechazar, continuar intentando o dar por finalizado el tiempo (time-out). identificacion hablante
Test de hipótesis para determinar la verificación de un usuario. H0 impostor, H1 auténtico identificacion hablante
El ratio de verosimilitud basado en la teoría de la decisión bayesiana con costos idénticos resulta ser: La probabilidad condicional de la hipótesis pA(z|H1) para el hablante A se estima usando sus scores y su modelo. La probabilidad condicional de la hipótesis nula pA(z|H0) se estima utilizando los scores de otros hablantes sobre el modelo del hablante A. La decisión bayesiana busca la minimización del error dado por el solapamiento de las pdf’s identificacion hablante
Decisión bayesiana de mínimo error El umbral T se escoge de diversas maneras 1 de acuerdo a una estimación de los ratios de las probabilidades a priori 2 para que satisfaga un criterio fijo de falsa aceptación (FA) o falso rechazo (FR) 3 buscando un ratio FA/FR deseado identificacion hablante
Curva ROC relaciona los tipos de error con el umbral de decisión. Se escoge el umbral de decisión que da la misma tasa de error FA y FR (equal error rate) (el óptimo ideal es el origen) identificacion hablante
Estructura de un sistema de identificación del hablante extracción de características selección de características: solo fonadas identificacion hablante