440 likes | 530 Views
CReSTIC. Centre de Recherche en Sciences et Technologies de l’Information et de la Communication. Elaboration de diagnostiqueurs locaux à partir de modèles distribuées de Partie Opérative. Alexandre PHILIPPOT Maître de Conférences alexandre.philippot@univ-reims.fr. JD-JN-MACS 2009.
E N D
CReSTIC Centre de Recherche en Sciences et Technologies de l’Information et de la Communication Elaboration de diagnostiqueurs locaux à partir de modèles distribuées de Partie Opérative Alexandre PHILIPPOT Maître de Conférences alexandre.philippot@univ-reims.fr JD-JN-MACS 2009 20 mars 2009
Diagnostic : Contexte Contexte : • Systèmes manufacturiers considérés comme des SED • Augmentation de la complexité des systèmes Augmentation du potentiel de pannes Objectif : • Comparer le système réel avec un modèle de son comportement (normal ou anormal) • Eviter la propagation • Aider à la décision Problèmes : • correspondance de comportement • granularité du modèle • explosion combinatoire
? Opérateur Diagnostic : Contexte Partie Commande Implantée Partie Opérative Observateur Défaut ? Reconfiguration ? Maintenance ? IHM Décision
Plan de présentation • Terminologie & Littérature • Point de vue du CReSTIC • Modélisation par EPO • Diagnostiqueurs • Application – ITS PLC • Modélisation par PoP • Conclusion et perspectives
Terminologie & Littérature Selon les techniques utilisées, la détection fait-elle partie du diagnostic ?
Terminologie & Littérature • Outils de représentation • Automates à états (Sampath, 95) • Réseaux de Petri (Genc, 03) • Expressions logiques (Wang, 00) • Chroniques (Boufaïed, 03) / Templates (Pandalaï, 00) • Modélisation des défauts • A base d’événements (Sampath, 95) • A base d’états (Zad, 03) • Mixte Diagnostic des SED • Structure de prise de décision • Centralisée (Sampath, 95) • Décentralisée inconditionnelle (Wang, 04) • Décentralisée conditionnelle (Debouk, 00) • Distribuée (Su, 04) • Notion de diagnosticabilité • Diagnosticabilité (Sampath, 95), (Lin, 94) • Co-diagnosticabilité (Wang, 04) • Diagnosticabilité collaborative (Qiu, 05) • …
Point de vue du CReSTIC Problèmes • Systèmes manufacturiers informationnellement et géographiquement décentralisés • Exposition à l’explosion combinatoire (SED) • Nécessité d’une description détaillée de la PO • Expression des spécificités technologiques difficile Proposition : Approche décentralisée • Eléments de PO (EPO) local diagnosers EPO = Actionneur avec détecteurs et pré-actionneurs associés • Utilisation de langage et d’outils de composition / projection (automates) • Modèles mixtes : event, state, timed models • Interprétation de (Balemi, 93) ↑, ↓, contrôlables et incontrôlables
Modélisation de la PO Modélisation : - intuitive (expert) - théorique/structurée (Chandra, 01) - pratique avec prie en compte des spécificités technologiques Un Vérin Double Effet (VDE) piloté par un distributeur pneumatique 5/2 bistable Spécificités technologiques du distributeur associé au vérin : • L’activation puis la désactivation d’un même ordre implique une réaction du vérin. • Priorité sur le premier ordre envoyé
Modélisation pratique Modèle des détecteurs pour 2 positions Modèle préactionneur distributeur 5/2 bistable Modèle actionneur d’un VDE avec distributeur 5/2 bistable Demande d’une connaissance experte des spécificités technologiques du matériel
Modèle EPO Composition synchrone du modèle des détecteurs avec le modèle actionneur Elément de Partie Opérative d’un VDE avec distributeur 5/2 bistable • Spécificités technologiques : • Priorité sur le premier ordre envoyé (SO RE RE SO) • SO SO entraîne la sortie du vérin
Spécifications de la commande • Informations du cahier des charges à travers un modèle des spécifications • La Partie Commande (PC) représente le comportement normal désiré • Intégration de cette information par : • Spécification de la commande modélisée par GRAFCET • - Algorithme d’intersection entre PC et PO • Contraintes du modèle de PO jusqu’à son fonctionnement désiré • - Contraintes sous forme d’automates ou d’équations logiques
Algorithme d’intersection • Extraction Sémantique commune avec la PO • Restriction Agréger les états du GE atteints par les événements n’appartenant pas à l’EPOi • Supprimer tout groupe non atteignable ou bloquant • Composition synchrone Elément de PO Commandé (EPOCi) • Comportement désiré de l’EPOi de manière détaillée
3) Local synchronized composition 2) Restriction Restricted Equivalent Graph for cylinder 2 Plant Element of cylinder 2 Controlled Plant Element of cylinder 2 Exemple 1) Extraction Equivalent Graph with 28 states GRAFCET of the sorting system Events of cylinder 2: {↑Out2, ↓Out2, ↑In2, ↓In2, ↑p2ar, ↓p2ar, ↑ct2, ↓ct2}
Par contraintes • Deux grandes catégories de contraintes : • Sécurité → inhibition d’actions • Vivacité → agencement de séquences • Implique de : • n’oublier aucune de ces contraintes • ne pas ajouter des contraintes restrictives
Information temporelle • Définir le temps de réaction suite à un ordre d’un actionneur • Utilisation de la logique floue Caractériser les défauts de type progressif Prise en compte des paramètres d’usures et de frottements Fonction de prévision : FP(α1, α2) = {α1, x1, (α2, [tmin1, tmax2], x2, l1)} Zone de détection au plus tôt Zone de détection au plus tard
Information temporelle Exemple sur le vérin A Fonction de prévision de l’état x3 : (temps de course du vérin) FPx3 = FP(↓a0, ↑a1) = {↓a0, x3, (↑a1, [5s, 15s], x4, F4)}
Diagnostiquer quoi? • Identifier tous les défauts possibles sur chaque EPO (observables ou non) • Sur les détecteurs • Sur les actionneurs Partition Fj = {f1, f2, …, fi} associée à un label “Fj” Possible faults on a Plant Element Possible faults on cylinder 10 faulty events defined in 3 partitions
Diagnostiqueurs locaux • f4 a0 qui reste bloqué à 1 • f9 vérin qui reste bloqué à l’état inactif malgré un ordre A+ • f12a1 qui reste bloqué à 0 Non diagnosticables par leur observation où par une FP à partir de x1 Affectation d’une étiquette de défaut
Diagnostiqueurs locaux • Défauts observables détectés trivialement • Diagnostiqueur simplifié aux défauts non observables • automates à 16 états pour le diagnostiqueur du vérin A Hypothèse forte : Une fonction de prévision pour chaque état normal du diagnostiqueur (intervalle d’acceptation obtenu par apprentissage)
Co-diagnosticabilité Mixte 2 CNS : - Isoler un défaut avec une décision certaine - Diagnostiquer le défaut dans un temps fini • Un modèle du procédé G avec son langage L • m diagnostiqueurs locaux Dj (j {1, 2, …, m}) • Un langage de spécification K • Par rapport aux fonctions de projections PLj (j {1, 2, …, m}) • Pour un ensemble de partition de défauts ПFi (i {1, 2, …, r}) f ПFi, i {1, 2, …, r}, n,st (L-K) (ПFi), stL, |t| ≥ n Tout défaut f de ПFiest diagnosticable par au moins un diagnostiqueur Dj dans un délai fini n par : (Evénements) j {1, 2, …, m},w PLj-1(PLj(st)) (L-K)w (L-K) (ПFi) et/ou (Etats)xXj, x’ = (st, x), x’’ = (w, x), V’ = V(x’), V’’ = V(x’’) V’, V’’ HFi et/ou (Contraintes temporelles)maxFPx = 1 et lx = Fi Le modèle G est alors dit co-diagnosticable
Coordinateur • Pourquoi ? : • Si défauts non diagnosticables localement nécessité d’un coordinateur • Objectif : • Garantir les mêmes performances de diagnostic qu’une approche centralisée • Deux rôles essentiels : • Etablir des contraintes de spécifications globales • Régler les cas d’indécision entre les diagnostiqueurs locaux • Indécision sur l’occurrence d’un défaut liée aux interactions entre les différents éléments (détecteur commun sur différents actionneurs)
Coordinateur Soit par règles simples : Règle 1 : b0 A+ = 0 Etiquette F2 Soit par table de décision : i {1, 2,…, 5} et j {6, 7,…, 10}
Implantation : Filtre / Intégré ? • Pb : Délais de communication entre PO et PC :=> • Temps de réactivité augmenté • Temps de cycle augmenté
Implantation : Filtre / Intégré ? Partie Commande Partie Opérative Commande EPO1 EPO2 Diag1 Diag3 EPO3 Diag2 Diagn EPOn Intégration du diagnostic au plus près de la commande
Application ITS PLC • ITS PLC Professional Edition : logiciel éducatif adapté à l’apprentissage de la programmation des API • Environnement virtuel réaliste : interactivité, animations 3D en temps réel, dynamiques et sons • Plusieurs systèmes très réalistes pouvant être connectés à un API bien réel • La simulation évite tous les risques de blessure pour les apprenants et la dégradation des équipements. • Possibilité de simuler des défaillances • Téléchargeable gratuitement en version Fr • http://www.realgames.pt/ • http://www.univ-reims.fr/index.php?p=1840&art_id
Avantages et inconvénients Proposition d’une démarche de diagnostic décentralisé avec coordinateur • Basée sur la construction de modèles enrichis (PO, PC, réactivité des actionneurs et expertise) • Prise en compte de la technologie • Constitution d’une bibliothèque d’EPO • Evaluation de la démarche sur un outil de simulation Limites et inconvénients de l’approche : • Diagnostic des défauts liés uniquement au matériel : Introduire le produit • Intégration de l’information temporelle difficile • Partage de ressources : Intersection locale difficile • Prise en compte de la commande • Détails et précision du diagnostic ?
Plan de présentation • Terminologie & Littérature • Point de vue du CReSTIC • Modélisation par EPO • Diagnostiqueurs • Application – ITS PLC • Modélisation par PoP • Conclusion et perspectives
Part of Plant : PoP Partie Opérative : Composée principalement de 3 familles d’éléments • les pré-actionneurs, • les actionneurs et • les capteurs Chaque famille divisée selon des caractéristiques technologiques Différentiation des comportements distincts besoin de modélisation détaillée Modélisation distribuée communication entre modèles à travers un échange de messages, d’informations, suivant un protocole Utilisation des automates de Moore : la sortie d’un automate représentant l’entrée d’un autre Ne plus prendre en compte la commande
Part of Plant (PoP) Total : 15 éléments
Modélisation des éléments Méthodologie • Définir les positions du pré-actionneur en fonction de toutes les possibilités d’entrées • Etablir une table de vérité du modèle par l’expert • Prendre en compte l’effet « Memory » pour les entrées en cas de non évolution
L’effet « Memory » est représenté par une boucle Modélisation des éléments Illustration Table de vérité Distributeur 5/2 bistable Out2 Out1 Chambre A Chambre B
Modélisation des éléments Méthodologie • Définir les états de l’actionneur en fonction de toutes les positions du pré-actionneur • Etablir une table de vérité du modèle par l’expert • Prendre en compte la dynamique du modèle (temps de déplacement d’une situation stable à une autre)
Dynamique représentée par 1* Temps de course Tc de la tige (selon course, diamètre, débit d’air, taux de charge …) caractéristiques techniques fournies par la doc ou déterminées par apprentissage Modélisation des éléments Table de vérité Illustration Vérin double effet VIN V-> V<- VOUT Le temps t évolue selon une horloge mesurant l’intervalle entre 2 événements Il est réinitialisé à chaque entrée dans un état dynamique ∆ pour affectation (->) ou test d’égalité (:=)
Modélisation des éléments Méthodologie • Retransmet une information sur la présence d’un produit ou d’un actionneur par sa mise à 1 • L’état du détecteur est alors renvoyé à la partie commande.
Modélisation des éléments Illustration Table de vérité Détecteur mécanique
Modélisation des éléments • De la bibliothèque des pré-actionneurs : • pilotage en monostable ou bistable • nombre de positions (2 ou 3) • Nombre d’orifices et NO ou NF ne changent en aucun cas la structure des modèles • Engendre 3 types de modèles différents • monostable à 2 positions, • bistable à 2 positions et • bistable à 3 positions Total : 8 modèles (pour 15 éléments) • De la bibliothèque des actionneurs : • Pour les moteurs • - si 1 sens de rotation alors 1 contacteur • - si 2 sens de rotation alors 2 contacteurs • Pour les vérins, seule particularité, les vérins pilotés par une structure à 3 positions (possibilité de situation stable intermédiaire)
Conclusion et perspectives • A partir de la chaîne fonctionnelle Granularité de bas niveau • Décomposition de la PO selon : • famille : pré-actionneur, actionneur et détecteur • technologie : électrique, pneumatique, monostable, bistable… • Pour : • diminuer l’explosion combinatoire • éviter les outils de composition • diagnostiquer avec précision et indépendamment de la commande • Constitution d’une bibliothèque des éléments les plus utilisés et validation sous simulation • Perspectives : • Prendre en compte les interactions : contraintes physiques de haut niveau • 2 vérins avec une zone commune • Modéliser le produit
Travaux en cours • Application sur logiciel de simulation de PO avec génération de défauts : • ITS PLC (www.realgames.pt) • Application sur système réel : Cellflex (http://meserp.free.fr/) • Projet MOSYP (Mesures des performances et Optimisation des SYstèmes de Production) : Axe CPER ICOS – Tâche « diagnostic et surveillance » • Contrôle/commande et ordonnancement d’atelier de Production • Thèse Noureddine MALKI : Diagnostic des SDH