1 / 9

Fourier Analysis

Fourier Analysis. % Figure 8-5 p. 204 Power Electronics Text-book % created 11 Sept 2007 % h.pota@adfa.edu.au % f1=1000; %control voltage frequency fs=15000; %trigger voltage frequency Vd=300; %Input DC Voltage Vcp=0.8; % control voltage peak Vtp=1; % trigger voltage peak ma=Vcp/Vtp;

varana
Download Presentation

Fourier Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fourier Analysis

  2. % Figure 8-5 p. 204 Power Electronics Text-book % created 11 Sept 2007 % h.pota@adfa.edu.au % f1=1000; %control voltage frequency fs=15000; %trigger voltage frequency Vd=300; %Input DC Voltage Vcp=0.8; % control voltage peak Vtp=1; % trigger voltage peak ma=Vcp/Vtp; imf=f1/fs; %inverse of mf mf=1/imf; % Obtaining the switching instants theta1=[]; theta2=[]; theta=[]; for n = 0:((fs/f1)+1)/2-1, x1=fzero(@(x1)Vcp*sin(imf*(2*pi*n+x1))-Vtp*(2/pi)*x1,0); theta1=[theta1, imf*(2*pi*n+x1)]; theta=[theta, imf*(2*pi*n+x1)]; x2=fzero(@(x2)Vcp*sin(imf*(2*pi*n+pi/2+x2))-(Vtp - Vtp*(2/pi)*x2),0); theta2=[theta2, imf*(2*pi*n+pi/2+x2)]; theta = [theta, imf*(2*pi*n+pi/2+x2)]; end; % Obtaining Fourier co-efficients numofhar=3*mf+5; B=zeros(1,numofhar); for n=1:numofhar, for m=1:length(theta)-1 B(n) = B(n) + quadl(@(x)(-1)^m*(Vd/2)*sin(n*x),theta(m),theta(m+1)); end; B(n) = 2*B(n)/pi; end;

  3. % Obtaining Fourier co-efficients numofhar=3*mf+5; B=zeros(1,numofhar); for n=1:numofhar, for m=1:length(theta)-1 B(n) = B(n) + quadl(@(x)(-1)^m*(Vd/2)*sin(n*x),theta(m),theta(m+1)); end; B(n) = 2*B(n)/pi; end;

  4. % Plotting part figure(1); subplot(211); hold off %xtrig=[0, imf*pi/2:imf*pi:2*pi-imf*pi/2,2*pi]; %0 to 2*pi xtrig=[0, imf*pi/2:imf*pi:pi-imf*pi/2,pi]; %0 to pi ytrig=[0]; for n = 1:length(xtrig)-2, ytrig=[ytrig,Vtp*(-1)^(n+1)]; %trigger waveform end; ytrig=[0]; for n = 1:length(xtrig)-2, ytrig=[ytrig,Vtp*(-1)^(n+1)]; %saw-tooth trigger waveform end; ytrig=[ytrig,0]; plot(xtrig,ytrig,'g'); title('PWM (Half-Cycle)'); grid on; ylabel('V_{control}, V_{trigger}'); xlabel('angle (rad/s)'); axis([0 pi -1.5 1.5]) hold on; plot(xtrig,Vcp*sin(xtrig),'r'); %control waveform

  5. %figure(2); subplot(212); %hold off; xt=[];yt=[]; eps=pi/(mf*3000); for n = 1:length(theta), xt = [xt, theta(n), theta(n)+eps]; %eps is to shift the point just a tiny bit yt = [yt, (-1)^(n+1), (-1)^(n+2)]; %alternate minus and plus for the square wave end; yt=(Vd/2)*yt; plot(xt,yt,'r'); grid on; xlabel('angle (rad/s)'); ylabel('V_{out}, V_{01}'); axis([0 pi -0.75*Vd 0.75*Vd]) hold on; xs=[0:0.001*pi:pi]; ys1=B(1)*sin(xs); ys=B(1)*sin(2*xs); %plot(xs,ys,'g',xs,ys1,'b'); plot(xs,ys1,'b'); hold off; figure(2); stem(abs(B)/(Vd/2)); grid on; title(['m_a = ',num2str(ma),', m_f = ',num2str(mf)]); ylabel('B_n'); xlabel('n');

More Related