1 / 10

Matlab - Fourier Analysis

Matlab - Fourier Analysis. 主講人:林麗娟 主講部分: FFT & 例題. Fourier Transform. 連續時間 下的 Fourier Transform 定義:. 離散時間 下的 Fourier Transform 定義﹝ DTFT﹞:. Fourier Transform. 無限 的 Discrete Fourier transform 定義﹝ DTFT﹞:. 有限 的 Discrete Fourier Transform 定義﹝ DFT﹞:. Compare DTFT & DFT.

yoland
Download Presentation

Matlab - Fourier Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Matlab - Fourier Analysis 主講人:林麗娟 主講部分:FFT & 例題

  2. Fourier Transform 連續時間下的Fourier Transform定義: 離散時間下的Fourier Transform定義﹝DTFT﹞:

  3. Fourier Transform 無限的DiscreteFourier transform定義﹝DTFT﹞: 有限的Discrete Fourier Transform定義﹝DFT﹞:

  4. Compare DTFT & DFT DFT→可以將信號由時間領域轉換到頻率領域 IDFT→可以將信號由頻率領域轉換回時間領域

  5. FFT & IFFT 將 代入 然後修改k、n的範圍,就會得到下面的FFT和IFFT的公式

  6. 波函式經FFT後的純量和相位 % Ex-1 % Prupose : Gnerate a 20 Hz sinnsoid samples at 128 Hz clear; N = 64; T = 1/128; k = 0:N-1; x = sin(2*pi*20*k*T); X = fft(x); magX = abs(X); hertz = k*(1/(N*T)); →將先前的變數和函數從記憶體中清除 →取樣數目 →週期 →數據資料的長度 →sin(w*t) = sin(2πf*t) = sin(2πf*kT) = sin(2*pi*20*k*T) →做FFT →算出純量的絕對值

  7. figure; subplot(311) ; plot(0:T:T*(N-1),x) , ylabel('x(kT)') , grid on subplot(312) ; stem(k(1:N),magX(1:N)) , ylabel('|X(k)|') , grid on subplot(313);stem(hertz(1:N),magX(1:N)),ylabel('|X(k)|'),grid on →產生一個新的圖形視窗 將數個小圖畫於同一個視窗中 Y軸的標籤 繪製一維曲線的基本函數 顯示網格線 繪製針狀圖

  8. % Ex-2 clear; n = 63; L = 2; t = -L:2*L/n:L; y = sin(13*pi*t/L); z = fft(y); p1 = angle(z); p2 = unwrap(angle(y)); figure; subplot(411);plot(t,y),ylabel('y=fft(t)'),grid on subplot(412);plot(0:n,abs(z)),ylabel('Abs'),grid on subplot(413);plot(0:n,p1),ylabel('phase'),grid on subplot(414);plot(0:n,p2),ylabel('phase'),grid on →sin(w*t0 ) = sin(2πf*t0 ) = sin(2πf*t/2L) = sin(πf*t/L) = sin(13*pi*t/L) →算出複數z的相位角 使相位在180度不會產生不連續點

More Related