450 likes | 463 Views
This presentation discusses the recent progress in understanding the kilohertz quasi-periodic oscillations (QPO) and spin behavior in low-mass X-ray binaries (LMXB). It explores the relations between spin and kHz QPOs, the implications of these findings, and the possible maximum spin values. The presentation also touches upon the QPO mechanisms and the absence of spin in Z-sources.
E N D
Recent Progress about kHz QPO and Spin in LMXB and their implications C.M. Zhang, H.X. Yin, Y. Yan, L.M. Song, F. Zhang National Astronomical Observatories, Beijing High Energy Physics Institute, Beijing Shandong University, Weihai High energy astrophysics Workshop, Shanghai, April 25-28, 2008
OUTLINE OF TALK • QPO in LMXB – kHz QPOs • Spins of accreting millisecond X-ray Pulsar • Spin and kHz QPO relations • BH QPOs, Miscs • QPO, Mechanisms • Implications and Conclusions
Spin and kHz QPO by RXTE 1996—2008 RXTE: NASA: Swank 1995 • kHz QPOs (31) van der Klis 2006; Belloni, Mendez & Homan 2005/2007 max=1329 Hz: van Straaten, Ford, van der Klis, Mendez, Kaaret, 2000 • Spin frequency - Burst oscillation (24); 45-1122? Hz, Wijnands 2005; Strohmayer & Bildsten 2006; Kaaret 2007 ?; Lamb & Boutloukos 2007; Yin, Zhang, Zhao et al 2007 Max=619 Hz ? Radio MSP 716 Hz (Hessels et al. 2006) • HBO, ~15-70 Hz,van der Klis 2006 • NBO, ~5-20 Hz,van der Klis 2006; Yu & van der Klis 2003 • BH QPO, ~100 Hz, McClintock & Remillard 2006
kHz QPOs in Atoll and ZSources -- CCD ~1% Eddington Accretion ~Eddington Accretion Accretion rate direction
Typical twin kHz QPOs (22/31) Typically: Twin KHz QPO Upper ν2 ~ 1000 (Hz) Lower ν1 ~ 700 (Hz) Twin 22/31 sources; ~ 310
QPO v.s. Accretion rate relation QPO frequency increases with the accretion rate SCO X-1, Van der Klis, 2006 kHz QPO profile; e.g. Mendez 2005 Barret, Olive, Miller 2007
Accreting X-ray millisecond pulsar--- SAX J1808.4-3658 (8 AXMPs); 401 Hz (2.49 ms) Wijnands and van der Klis, 1998 Nat; Wijnands et al 2003 Nat
Type-I X-ray Burst frequency 4U1728-34, 362.5 Hz --- 363.9 Hz , ~1Hz frequency drift 17 burst sources, van der Klis 2006; Strohmayer and Bildsten 2006
Table: sources with twin kHz QPO/spin 8 No Spin found in Z-sources ! Why ? Spins see: Muno 2001, Chakrabarty 2004; Wijnands 2005; Strohmayer & Bildsten 2006; Belloni, Mendez & Homan 2005/2007; Lamb & Boutlokos 2007; Yin, Zhang, Zhao et al 2007
separation of twin kHz QPOs = const?Simple beat model ?: Alpar & Shaham 1985; Strohmayer et al 1996; Miller, Lamb & Psaltis 1998;Improved beat model needed, e.g. Lamb 2001; Lamb & Miller 2003
Twin kHz QPO relation • 1. separation is constant ? (simple beat) • 2. Linear relation: ν2 = A ν1 +B • Ratio is a constant : 3:2 ? • Abramowicz, et al. 2003 difference Cir X-1 Non-linear relation by Psaltis et al. 1998; Zhang et al. 2006a for 290 pairs ν1 = ~700. (Hz)(ν2 /1000Hz)b b ~ 1.6 Atoll Source, e.g. 4U1728 b~ 1.8 Z Source, e.g. Sco X-1 Ratio Cir X-1 : Boutloukos, van der Klis, Altamirano, Klein-Wolt, Wijnands,,Jonker, Fender: 2006
AMXP: special cases of 1.5 shift SAXJ1808.4-365; XTE J1807-294 SAXJ1808.4-365: Wijnands & van der Klis 1998; Chakrabarty, Morgan, Muno, Galloway, .Wijnands, Klis, Markwardt 2003 XTE1807-294, Linares et al 2006; Zhang et al 2006b
kHz QPO separation and spin relation SAXJ 1808.4-3658,Twin kHz QPOs :~700 Hz, ~ 500 Hz;Burst/spin: 401 Hz Wijnands, van der Klis, 1998; Wijnands, van der Klis, Homan, Chakrabarty, Markwardt, Morgan, 2003 XTE J 1807-294, twin kHz QPO sep ~ 200 Hz, spin=191 Hz, Linares, van der Klis, Altamilano, Markwardt 2005; Zhang et al, 2006b Slow rotator (XTE 1807); separation/spin ~ 1 Fast rotator (SAX 1808); separation/spin ~ 0.5 Linares, van der Klis, Wijnands 2007 Lamb & Boutloukos 2007
Table 1. TWELVE sources with the twin kHz QPOs and spin frequencies. Millisecond pulsars sep spin ratio • XTE J1807-294 79-247 191 0.94-1.29 • SAX J1808.4-3658 195 401 0.49 • Atoll sources • 4U 1608-52 224-327 619 0.36-0.53 • 4U 1636-53 217-329 581 0.37-0.57 • 4U 1702-43 333 330 1.01 • 4U 1728-34 271-359 363 0.75-0.99 • KS 1731-260 266 524 0.51 • 4U 1915-05 290-353 270 1.07-1.31 • IGR J17191 330 294 1.12 • SAX J1750.8-29 317 601 0.53 • 4U 0614+09 238-382 415 0.57-0.92 • Aql X-1 278-280 550 0.51-0.51 data: van der Klis 2006, Belloni, Mendez & Homan 2005, 2007, Zhang et al. 2006a, Yin, Zhang et al. 2007
Spin Frequency Distribution 24 Spin sources Yin, Zhang, Zhao et al 2007 12 spin + kHz QPO sources Spin frequency: Max: 1122 Hz, Kaaret et al 2007 ? Min: 45 Hz Villarreal & Strohmayer2004 spin
Magnetic filed – LMXB, Atoll & Z source • Spin > corotation radius ~40 km > ~108 G Atoll, Z source has spin detected ? • kHz QPO distribution for Atoll/Z > similar magnetosphere B ~ 109 G (Mdot-Ed)1/2 Z source has a stronger field than Atoll’s B ~ 109 G (Z) ; B ~ 108 G (Atoll) e.g. Zhang & Kojima 2006; Burderi et al 1996, 1997; Konar & Bhatcharya 2003 Psaltis, Lamb & Miller 1998; Lamb & Yu 2006; Hasinger & Kils 1986
Maximum spin: gravitational wave ? • NS break up frequency > 1000 Hz • Max ~ 700 Hz (1122 Hz ?) • GW ?
Radio Pulsar:Magnetic field--period diagram (1) Why B-P ? B evolves ? Recycled ? (2) 716 Hz; ~10^8 G; why not 10^7 G ? Radio PSR: 1850 + magnetar: 5SGR+11AXP MSP: ~200 BPSR: 130, recycled LMXB
Low frequency QPO---kHz QPO relation Belloni, Psaltis & Klis 2002 Low frequency QPO< 100 Hz FBO/NBO = 6-20 (Hz) HBO = 15-70 (Hz) Empirical Relation νHBO = 50. (Hz)(ν2 /1000Hz)1.9-2.0 νHBO = 42. (Hz) (ν1/500Hz)0.95-1.05 νqpo = 10. (Hz) (ν1/500Hz) ν1 = 700. (Hz)(ν2 /1000Hz)1.6-2.0
Low-high frequency QPO relation in WD/NS/BH Similarity in WD/NS/BH ? Neutron stars Black holes ? White dwarfs, Cvs Zhang et al 2007, PASP Titarchuk & Wood 2002; Mauche 2002; Warner & Woudt 2004; Warner 2006 + 27 CVs, 5 magnitude orders in QPO frequency
Parallel Line PhenomenonkHz QPO-luminosity relation Similarity/Homogeneous ? Among the different sources, same source at the different time
kHz QPO v.s. Count rate kHz QPO corresponds to the position in CCD, to accretion rate Mdot; QPO ~ Mdot
Black Hole High Frequency QPOs 3:2 mechanism: Abramowicz et al 2003 Wang DX et al. 2003; 2006 • HFQPO: 40-450 (Hz) • Frequency stable with Luminosity • Twin QPO relation 3:2 (4 sources) • Frequency-Mass relation: 1/M • Jets like Galactic BHs ~10 Msun Different from: NS/LMXB kHz QPOs (McClintock & Remillard 2003;2006) Frequency at ISCO Schwarzschild νk= (1/2π)(GM/r3)1/2 = (c/2πr) (Rs/2r)1/2 νk (ISCO) = 2.2 (kHz) (M/Mסּ) -1 GRO J1655-40, XTE J1550-564 XTE 1650-5000, 4U1630-47 XTE 1859-226, H 1743-322 GRS 1915+105, 7 microquasars van der Klis 2006 Measuring BH spin by QPO, (Kerr SP): Cui et al. 1998; Zhang SN et al 1997 Torok, Abramowicz, 2006
High frequency pair QPO BH: ~3:2 --- NS: varied near 3:2
Microquasar Jet formation condition Massi & Bernado 2008, P(mag)<P(flow) 1) Alfven radius ~ NS radius, Z sources: Cir X-1, Sco X-1 twin kHz QPOs and jets, no spins detected 2) Alfven radius ~ ISCO 7 microquasars: jets, 3:2 twin QPO ratios (40-450 Hz)
Theoretical Models Alpar & Shaham 1985; Miller, Lamb, Psaltis 1998; Strohmayer et al 1996; Lamb & Miller 2001; 2003 Beat Model for KHz QPO ν2 = νkepler ν1 = νkepler - νspin ∆ν = ν2 - ν1 = νspin …Constant
Relativistic precession model by Stella & Vietri 1999 ISCO Saturation Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, ν2 = νkepler ν1 = νprecession = ν2 [1 – (1 – 3Rs/r)1/2] ∆ν = ν2 - ν1 is not constant
Theoretical model Problems: = 3 M⊙ . For SAJ 1808 40 NS ~ 1.4 solar mass Stella and Vietrie, 1999, Precession model
Alfven wave oscillation MODEL Zhang 2004 AA; Li & Zhang 2005 ApJ; Keplerian Orbital frequency MHD Alfven wave Oscillation in the orbit ν2 = 1850 (Hz) A X3/2 ν1 = ν2X (1- (1-X)1/2)1/2 A=m1/2/R63/2; X=R/r, m: Ns mass in solar mass R6 is NS radius in 10^6 cm
Constrains star mass radius by kHz QPOs • Inner boundary to emit kHz QPO: ISCO, R > MAX M, R • M<2.2 M⊙ (1kHz/freq) • R<19.5 km (1kHz/freq) • M/R3 relation known by model for twin kHz QPOs SAXJ 1808.4: M/R3 by Burderi & King 1998
Mass-Radius relations Measuring NS Mass & Radius by kHz QPO, gravitational redshift and apparent radius • Apparent Radius: R∞=R/(1-Rs/R)1/2 Haensel 2001 • Gravitational redshift: z=(1-Rs/R)-1/2 -1 Cottam et al 2003, z=0.35 • Mass density: M/R3 (by kHz QPOs) Zhang 2004 1E1207.4-5209, Aql X-1 and EXO 0748-676 Rs=2GM: Schwarzschild radius
Measuring NS Mass-Radius by kHz QPO, gravitational redshift and apparent radius Zhang, et al. 2007 MNRAS AqlX-1, EXO 0748-676 Samples CN1/CN2: normal neutron matter, CS1/CS2: quark star CPC: Bose-Einstein condensate of pions
Estimating Magnetic filed - LMXB • Spin > corotation radius ~40 km > ~108 G • Spin variation: torque > ~108 G Wijnands & van der Klis 1998; Burderi, de Salvo.. 2006; • kHz QPO distribution for Atoll/Z > similar magnetosphere ~108 G (Mdot)1/2 Zhang & Kojim 2006; Burderi et al 1996, 1997; White & W Zhang 1998 Z source has a stronger field than Atoll’s
Estimating NS spin by spin-kHz QPO relation Spin frequency is less than the minimum upper-frequency of twin kHz QPOs
Conclusions • Spin - kHz QPO relation (a) slow/fast rotator ½-1.0 ? (b) occur kHz QPO – Spin ? Predicts Z spin (c) Av. kHz QPO – spin relation • Constraints on kHz QPOs Model twin kHz QPOs – nonlinear relation • NS magnetic implications: Z/Atoll • Low-high QPO ratio = 12 - 15 similarity in NS/BH/WD; GR is a role ? Thanks many friends here for thoughtful discussions, which arouses my interest of understanding spins and kHz QPOs.
QPO Frequency vs. Flux Full range Magnified
Fastest Pulsar XTE J1739-285 1122 Hz Mass & Radius Kaaret et al. 2007 Quark Star ? Xu, MNRAS, 2005 Xu, Qiao, Wang, CPL, 2003 Li et al 1999 PRL Cheng et al. 1998, Sci Sub-millisecond PSR : high mass, Burderi et al. 2003 Quark Star ?