1 / 29

Radiation Protection at SPS

Radiation Protection at SPS. D. Forkel-Wirth (TIS-RP-SL) M. J. Mueller (TIS-RP) I. Brunner, N. Conan, J.C. Gaborit, G. Grobon, S. Roesler, H. Vincke (TIS-RP-SL) 10 December 2003. Content. Events at the SPS complex in 2003 TDC2/TCC2: vacuum and water leaks during proton run

xander
Download Presentation

Radiation Protection at SPS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radiation Protection at SPS D. Forkel-Wirth (TIS-RP-SL) M. J. Mueller (TIS-RP) I. Brunner, N. Conan, J.C. Gaborit, G. Grobon, S. Roesler, H. Vincke (TIS-RP-SL) 10 December 2003

  2. Content • Events at the SPS complex in 2003 • TDC2/TCC2: vacuum and water leaks during proton run • Radioactive water in DP540 • BA1: release of slightly radioactive air • Ejection tests in TT40 • Upgrades of ECA4 and ECA5 for 2004

  3. The SPS Complex TDC2/TCC2 ECA4 BA1 TT40 ECA5

  4. A Summer in TDC2/TCC2… Water leaks Vacuum leaks Electrical inst. Consolidation

  5. Water sampling campaign DP540

  6. Water Sampling Campaign

  7. en Bq/L Radioactivity in DP540 En L Coupure de l’arrive d’eau Problem to be followed up Puzzle: 3H in DP540 week end du 6.09.

  8. Air Releases in BA1 FB: increased radiation levels during waste bin control 15.10. – 16.10. 3.5.1013 ppp, 450 Gev

  9. Air Releases in BA1 Not adapted to the measuring problem Problem to be followed up close to TIDV

  10. TT40 test • Extraction from SPS into TED just downstream. • 2 * 24 hours • 8-9th September 2003 • 24 hours with 5 to 10 x 109 protons per extraction • Total  1.3 x 1013 • 8-9th October 2003 • 24 hours with 5 to 10 x 109 proton per extraction • and for a period 12 bunch extraction • Total  1.4 x 1014 • Careful measurements performed before and after by RP group 

  11. TT40 Ejection Tests • Dose rate in mSv/h 1.8 8 0.5 1 Debits de dose du 22.09.03 (2 weeks cooling) Debits de dose du 11.11.03 (~ 4 weeks cooling)

  12. BEAM TT40 BEAM TT40 4 3 1 2 • 888 TED 400354 F4 400368 QTL 400034 MBSG 410010 MBSG 410017 6 5 7 8 9 10 12 11 MBSG 410024 TT41 TJ8 PPG 400490 TT40 13 15 TI8 14 QTLD 400018 Results of TT40 tests Specific activity in mBq/g of the “carrotte” Specific activity in mBq/g (No. 1 – 15) Negligible!

  13. LHC intensity: 4.0E12 p/s CNGS intensity: 1.2E13 p/s SPS to LHC/CNGS beam extraction/injection facility SPS protons (450 GeV/c) are extracted from the SPS (at ECX/ECA4) into the transfer tunnel TT40 to be routed into the TI8 tunnel (LHC) or into the TT41 tunnel (CNGS). ECX4 protons ECA4 protons

  14. Cable tubes ECA4 ECX4 Dummy Beam loss rate = 0.1 % Septum magnets Chicane to ECA4 SPS tunnel ECX4

  15. SPS tunnel ECX4 Additional shielding Shielding of corners Access gallery slit Cable tubes Shielding wall Chicane entrance to SPS ECA4 click here to proceed

  16. Cable tubes ECA4 ECX4 Dummy Beam loss rate = 0.1 % Septum magnets Chicane to ECA4 SPS tunnel Radiation studies for ECA4 under LHC/CNGS beam extraction conditions Weakest area Sv/h 1.0E+01 4.6E+00 2.2E+00 1.0E+00 4.6E-01 2.2E-01 1.0E-01 4.6E-02 2.2E-02 1.0E-02 4.6E-03 2.2E-03 1.0E-03 4.6E-04 2.2E-04 1.0E-04 4.6E-05 2.2E-05 1.0E-05 4.6E-06 2.2E-06 1.0E-06 ECX4 ECA4 CNGS intensity: 1.2E13p/s High dose in ECA4 High losses in ECX4 Dose rates after upgrade of major weak points: ECA4 floor level: ~ 5 mSv/h (almost acceptable) upper levels: > 10 mSv/h (not acceptable) ECX4 ECA4 Local beam shielding or reinforcement of the whole shielding wall required to achieve “Simple Radiation Controlled” conditions. Upgrade

  17. SPS5TheUA1 Place CERN TIS – RP 10.12.2003

  18. Shielding Gap between Blocks Shielding Block SPS5WeakPointsforRadiationProtection CERN TIS – RP 10.12.2003

  19. SPS5WeakPointsforRadiationProtection Crossings Downstream Upstream CERN TIS – RP 10.12.2003

  20. SPS5Monte CarloSimulation to find the worst case scenario CERN TIS – RP 10.12.2003

  21. Elevator-Shaft Spiral staircase Weak Points Crossings & Shielding Gaps Vertical Shafts Elevator & Spiral Staircase Gap between Blocks SPS5 CERN TIS – RP 10.12.2003

  22. Additional shielding SPS5Future Options&Outlook Shielding improvements are necessary to assure radiation protection limits for future experimental installations (e.g.: roman pots, LHC collimator tests during 2004) Access to elevator and spiral staircase shafts have to be controlled – not at least, because of the given problem on two interlinked fronts: decreasing dose limits on one hand side and rising design source intensities on the other. CERN TIS – RP 10.12.2003

  23. …2004 and onwards • Let’s prepare for LHC and CNGS • TT40 irradiation tests • TI8 injection tests • CNGS beam tests into TT40 • Besides the daily routine • Extremely busy shut-down (e.g. consolidation of TDC2 and TCC2) • ….North area modifications • Follow up of BA1, activated water…. • Surprises….

  24. mSv/h TT40 Chicane TED Radiation levels in the injection tunnel system in case of beam extraction tests CNGS intensity: 1.2E13p/s For beam extraction tests protons are stopped in the beam dump “TED” Radiation components (high E muons, all muons, hadrons) seen at the beginning of the tunnels leading to CNGS and LHC in case of highest beam intensity. mSv/h High E muons All muons Hadrons

  25. Tunnel depth in m Tunnel depth in m Dose rates from hadrons () and muons () together with the total dose rate () as a function of depth in the curved sections of TT41 (left) and TI8 (right) due to protons (highest intensity) interacting in the TED. Interlock doors and radiation monitors will be installed at a depth of about 350 m inside the curved tunnel sections to keep dose rate on personnel below to 10 nSv/h .

  26. French Radiation Protection Legislation Décret n° 2003-296 du 31 mars 2003 relatif à la protection des travailleurs contre les dangers des rayonnements ionisants Lorsque le chef de l'entreprise utilisatrice fait intervenir une entreprise extérieure ou un travailleur non salarié, il assure la coordination générale des mesures de prévention Il transmet les consignes particulières applicables en matière de radioprotection dans l'établissement aux chefs des entreprises extérieures

  27. French Radiation Protection Legislation En particulier, lors d'une opération se déroulant dans la zone contrôlée le chef d'établissement, en collaboration, avec le chef d'établissement de l'entreprise extérieure ou le travailleur non salarié fait procéder à une évaluation prévisionnelle de la dose collective et des doses individuelles que les travailleurs sont susceptibles de recevoir lors de l'opération. A cet effet, les responsables de l'opération apportent leur concours à la personne compétente. Ces objectifs sont fixés au niveau le plus bas possible compte tenu de l'état des techniques et de la nature de l'opération à effectuer

  28. French Radiation Protection Legislation Les travailleurs susceptibles d'interveniren zone surveillée ou en zone contrôléebénéficient d'une formation à la radioprotection organisée par le chef d'établissement. Cette formation porte sur les risques liés à l'exposition aux rayonnements ionisants. Elle est adaptée aux procédures particulières de radioprotection touchant au poste de travail occupé ainsi qu'aux règles de conduite à tenir en cas de situation anormale. Le chef d'établissement remet à chaque travailleur avant toute intervention dans une zone contrôlée, une notice rappelant les risques particuliers liés au poste occupé ou à l'intervention à effectuer, les règles de sécurité applicables, ainsi que les instructions à suivre en cas de situation anormale.

  29. French Radiation Protection Legislation Les entreprises qui assurent des travaux de maintenance, d'intervention ou de mise en oeuvre des appareils émettant des rayonnements ionisants doivent avoir obtenu un certificat de qualification justifiant de leur capacité à effectuer des travaux sous rayonnements ionisants.Les entreprises de travail temporaire qui mettent à disposition des travailleurs pour la réalisation de tels travaux sont soumises aux mêmes obligations.  Les certificats de qualification sont délivrés par des organismes accrédités dans des conditions fixées par arrêté des ministres chargés du travail, de l'industrie et de l'agriculture pris après avis de l'Institut de radioprotection et de sûreté nucléaire. 

More Related