1 / 50

Chapter 9: Phase Diagrams

Chapter 9: Phase Diagrams. Phase b ( A and B atoms). Phase a ( A and B atoms). Nickel atom. Copper atom. ISSUES TO ADDRESS. • When we mix two elements ... what equilibrium state do we get?. Structure Properties Processing. • In particular, if we specify...

xannon
Download Presentation

Chapter 9: Phase Diagrams

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 9: Phase Diagrams Phase b (A and B atoms) Phase a (A and B atoms) Nickel atom Copper atom ISSUES TO ADDRESS... • When we mix two elements... what equilibrium state do we get? Structure Properties Processing • In particular, if we specify... --a composition (e.g., wt% Cu - wt% Ni), and --a temperature (T ) then... How many phases do we get? What is the composition of each phase? How much of each phase do we get (relative amount)?

  2. Sucrose/Water Phase Diagram 10 0 Solubility L Limit 8 0 (liquid) 6 0 + L S Temperature (°C) (liquid solution (solid 4 0 i.e., syrup) sugar) 20 0 20 40 60 80 100 65 Co =Composition (wt% sugar) Sugar Water Pure Pure Phase Equilibria: Review: Solubility Limit • Introduction • Solutions – solid solutions, single phase (e.g. syrup) • Mixtures – more than one phase (syrup and solid sugar) • Phase: Homogeneous portion of a system that has uniform physical and chemical properties Solubility Limit: Max concentration for which only a single phase solution occurs. Q: What is the solubility limit at 20°C? Answer: 65 wt% sugar. If Co < 65 wt% sugar: syrup If Co > 65 wt% sugar: syrup + sugar.

  3. Components and Phases • • Components: • The elements or compounds which are present in the mixture (e.g., Al and Cu) • • Phases: • The physically and chemically distinct material regions that result (e.g., a and b). • Equilibrium • No change with time – fixed composition for each component Two phases Two Components b (lighter phase) Includes Al and Cu Al-Cu Alloy a (darker phase) Includes Al and Cu

  4. B (100°C,70) 1 phase D (100°C,90) 2 phases 100 L 80 (liquid) + 60 L S Temperature (°C) ( liquid solution (solid 40 i.e., syrup) sugar) A (20°C,70) 2 phases 20 0 0 20 40 60 70 80 100 Co =Composition (wt% sugar) Effect of T & Composition (Co) path A to B. • Changing T can change # of phases: • Changing Co can change # of phases: path B to D. water- sugar system

  5. T composition T ? Phase Change Time Phase Diagrams • Thermodynamics: Phase Diagrams Indicate phases as function of T, Co, and P. • For this course: -binary systems: just 2 components. -independent variables: T and Co (P = 1 atm is almost always used). Phase Diagram: A Plot of T versus C indicating various boundaries between phases Types of phase diagrams depend on Solubility • Isomorphous phase diagram (complete solubility) • Eutectic phase diagram (partial solubility) • Complex phase diagram (…….) How to obtain phase diagrams ? - From cooling curves for various starting solutions (Thermal method) Uses of Phase Diagrams: - No. of phases - Composition of each phase - Relative amount of each phase + Predict the microstructure

  6. Phase Equilibria - Solutions Simple Solution System (e.g., Ni-Cu solution) Remember • Both metals have • Nearly the same atomic radius • The same crystal structure (FCC) • similar electronegativities • (W. Hume – Rothery rules) suggesting high mutual solubility. Ni and Cu are totally miscible (soluble) in all proportions (compositions). ONE PHASE ALWAYS – Isomorphous !

  7. Phase Diagram for Cu-Ni system 1600 1500 L (liquid) 1400 Liquidus line a T(°C) + 1300 Solidus line L 1200 a 1100 (FCC solid Soln) 1000 wt% Ni 0 20 40 60 80 100 Phase Diagrams- Metals Isomorphous Phase Diagram Complete solubility - one phase field extends from 0 to 100 wt% Ni. • 2 phases: L (liquid) a (FCC solid solution) • 3 phase fields: L a L + a

  8. Phase Change • Phase boundary: Lines between different phases e.g. • Liquid • solid • one phase • two phases …etc) • Phase Change: • Solidification (or melting) • Phase Reaction: one phase gives DIRECTLY two phases e.g. Liquid  Solid phase 1 + Solid Phase 2 (both insoluble) • This occurs at • Certain (fixed) temperature: TE • Certain (fixed) composition: CE • Eutectic Phase Reaction: L a + b • There are other types of phase reactions (Later)

  9. Cooling Curves There are various types of cooling curves: Depending on composition (characteristics) • Pure Element • Mixture of soluble 2 elements • Mixture of Partially Soluble 2 elements • Mixtures undergoing Phase Reactions • At the composition for phase reaction • Before the composition for phase reaction

  10. 1) Pure Element 2) Mixture of soluble 2 elements T L T T L L a (A or B) L a Tmelting a a Time Time L L T L a + b L a a + b TE L a + b a + b Time Time Types of Cooling Curves 3) Phase Reaction at CE 3) Phase Reaction: Co > CE

  11. Constructing Phase Diagrams Thermal Method • Start with several different solutions • Each solution at certain co • Prepare the solutions in liquid form (melting) • Cool each solution while recording T versus time • Plot the cooling curve for each solution • At each phase change: there are changes in the slope • Latent Heat • Change in the properties (specific heat) • Phase reaction (later) • Project cooling curves on T versus co plot. • Connect the points from projection creating boundaries. • Label different obtained areas and boundaries.

  12. T Time Composition Constructing Isomorphous Phase Diagrams Phase Diagram T verus Co Cooling Curves at Various Initial Co

  13. T(°C) 1600 L (liquid) 1500 a 1 phase: Cu-Ni phase diagram liquidus B (1250°C, 35): (1250°C,35) 1400 solidus a 2 phases: L + a a + 1300 L B (FCC solid 1200 solution) 1100 A(1100°C,60) 1000 wt% Ni 0 20 40 60 80 100 Using Phase Diagrams:# and types of phases Rule 1: If we know T and Co, then we know: - Number and types of phases present. • Examples: A(1100°C, 60):

  14. Cu-Ni system T(°C) A T C = 35 wt% Ni A o tie line liquidus L (liquid) At T = 1320°C: 1300 A a + L Only Liquid (L) B T solidus B C = C ( = 35 wt% Ni) L o a a At T = 1190°C: + D L (solid) 1200 D a Only Solid ( ) T D C = C ( = 35 wt% Ni ) a o 32 35 4 3 20 30 40 50 At T = 1250°C: C C C a B L o wt% Ni a Both and L C = C ( = 32 wt% Ni here) L liquidus C = C ( = 43 wt% Ni here) a solidus Using Phase Diagrams:composition of phases Rule 2:If we know T and Co, then we know: - the composition of each phase. • Examples:

  15. Using Phase Diagrams:weight fractions of phases Cu-Ni system T(°C) A T C = 35 wt% Ni A o tie line liquidus L (liquid) At T : Only Liquid (L) 1300 a A + L B W = 1.0 , W = = 0 a L T solidus B S R a At T : Only Solid ( ) D a a + W = 0, W = 1.0 L a L (solid) 1200 D T a D At T : Both and L B 32 35 4 3 20 3 0 4 0 5 0 S = WL C C C a L o wt% Ni R + S R = = 0.27 Wa R + S Rule 3: If we know T and Co, then we know: --the relative amount of each phase (given in wt%). • Examples:

  16. T(°C) tie line liquidus L (liquid) 1300 a + M ML L B solidus T B a a + L (solid) 1200 R S S R 20 3 0 4 0 5 0 C C C a L o wt% Ni The Lever Rule • Tie line – connects the phases in equilibrium with each other - essentially an isotherm • How much of each phase?Think of it as a lever (teeter-totter)

  17. Microstructure - Cooling in a Cu-Ni Binary T(°C) L: 35wt%Ni L (liquid) Cu-Ni system a 130 0 A + L L: 35 wt% Ni B a: 46 wt% Ni 35 46 C 32 43 D L: 32 wt% Ni 24 36 a a : 43 wt% Ni + 120 0 E L L: 24 wt% Ni a : 36 wt% Ni a (solid) 110 0 35 20 3 0 4 0 5 0 wt% Ni C o • Consider Co = 35 wt%Ni. Observe the microstructure while going down (cooling) at the same composition.

  18. Cored vs Equilibrium Phases Uniform C : a a First to solidify: 35 wt% Ni 46 wt% Ni a Last to solidify: < 35 wt% Ni • Ca changes as we solidify. • Cu-Ni case: First a to solidify has Ca = 46 wt% Ni. Last a to solidify has Ca = 35 wt% Ni. • Fast rate of cooling: Cored structure • Slow rate of cooling: Equilibrium structure

  19. --Tensile strength (TS) --Ductility (%EL,%AR) 60 %EL for pure Cu 400 %EL for 50 pure Ni TS for Elongation (%EL) 40 pure Ni Tensile Strength (MPa) 300 30 TS for pure Cu 200 20 0 20 40 60 80 100 0 20 40 60 80 100 Cu Ni Cu Ni Composition, wt% Ni Composition, wt% Ni - Peak as a function of Co - Min. as a function of Co Mechanical Properties:Cu-Ni System • Effect of solid solution strengthening on:

  20. Eutectic Phase Diagram T a L + L • TE : Eutectic Temperature L a + b : Eutectic Composition • CE a + b TE Time With Eutectic Phase Reaction L(CE) (CE) + (CE) The phase diagram is characterized with: • 3 single phase regions (L, a and b) • Partial Solubility – Solubility Limit of A in B forming b B in A forming a L (liquid) Occurs at T a b L + b TE a + b CE 100 0 Wt% A: Co Remember Phase Reaction at CE

  21. 1) Pure A or B 2) Giving aor b T L T T L T(°C) L a L L a Tmelting a a a L + a b L + Time b Time What is the difference in this side L L T L a + b a + b L a a + b TE 100 0 L a + b a + b Wt% A: Co Time Time Eutectic Phase Diagram – Cooling Curves

  22. a L + Eutectic Phase Diagram • Boundaries - lines: • Liquidus • Solidus • Solvus • Now, apply previous rules ? • On real systems T(°C) L Liquidus Solidus a b L + b Eutectic Reaction Solvus a + b 100 0 Wt% A: Co Maximum solubility of A in B Maximum solubility of B in A

  23. Example-Eutectic System T(°C) Ex.: Cu-Ag system 1200 L (liquid) a : mostly Cu 1000 b a : mostly Ag L + a b L + b 800 TE • TE : No liquid below TE TE=779°C 600 CE=71.9% Given T and C Values are characteristics Of Cu-Ag system 400 a + b 8.0% 91.2% 200 80 100 0 20 40 60 CE Co , wt% Ag

  24. EX: Pb-Sn Eutectic System (1) T(°C) 300 L (liquid) a L + a b b L + 200 183°C 18.3 61.9 97.8 C- CO 150 S R S = W = a R+S C- C 100 a + b 99 - 40 59 = = = 0.67 99 - 11 88 100 0 11 20 60 80 99 40 CO - C R W C C Co = =  C, wt% Sn C - C R+S 40 - 11 29 = = 0.33 (or 1 – 0.67) = 99 - 11 88 • For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find... --the phases present: a + b Pb-Sn system --compositions of phases: CO = 40 wt% Sn Ca = 11 wt% Sn Cb = 99 wt% Sn --the relative amountof each phase:

  25. EX: Pb-Sn Eutectic System (2) T(°C) CL - CO 46 - 40 = W = a CL - C 46 - 17 300 L (liquid) 6 a L + = = 0.21 29 220 a b b R L + S 200 183°C 100 a + b 100 17 46 0 20 40 60 80 C CL Co C, wt% Sn CO - C 23 = W = = 0.79 L CL - C 29 • For a 40 wt% Sn-60 wt% Pb alloy at200°C, find... --the phases present: a + L Pb-Sn system --compositions of phases: CO = 40 wt% Sn Ca = 17 wt% Sn CL = 46 wt% Sn --the relative amountof each phase:

  26. Microstructures in Eutectic Systems: I T(°C) L: Cowt% Sn 400 L a L 300 L a + a 200 (Pb-Sn a: Cowt% Sn TE System) 100 b + a 0 10 20 30 Co , wt% Sn Co 2 (room T solubility limit) Depends on the composition • Co < 2 wt% Sn • Result: --at extreme ends --polycrystal of a grains i.e., only one solid phase.

  27. Microstructures in Eutectic Systems: II L: Co wt% Sn T(°C) 400 L L 300 a L + a a: Cowt% Sn a 200 TE a b 100 b + a Pb-Sn system 0 10 20 30 Co , wt% Sn Co 2 (sol. limit at T ) 18.3 room (sol. limit at TE) • • 2 wt% Sn < Co < 18.3 wt% Sn • • Result: • Initially liquid +  • then  alone • finally two phases • a polycrystal • fine -phase inclusions

  28. Microstructures in Eutectic Systems: III Micrograph of Pb-Sn T(°C) eutectic L: Co wt% Sn microstructure 300 L Pb-Sn system a L + a b L 200 183°C TE 100 160m a : 97.8 wt% Sn : 18.3 wt%Sn 0 20 40 60 80 100 97.8 18.3 CE C, wt% Sn 61.9 • Co = CE • Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of a and b crystals.

  29. Lamellar Eutectic Structure

  30. Microstructures in Eutectic Systems: IV L T(°C) L: Co wt% Sn a L a 300 L Pb-Sn system a L + a b b L + R S 200 TE S R a b 100 + a primary a eutectic b eutectic 0 20 40 60 80 100 18.3 61.9 97.8 Co, wt% Sn • 18.3 wt% Sn < Co < 61.9 wt% Sn • Result:a crystals and a eutectic microstructure

  31. Microstructures in Eutectic Systems: IV • Just aboveTE : L T(°C) L: Co wt% Sn a C = 18.3 wt% Sn a L a CL = 61.9 wt% Sn 300 L Pb-Sn system S W a L + a = 0.50 ‘ = R + S a b WL = (1- W ) = 0.50 b L + a R S 200 TE S R • Just belowTE : C = 18.3 wt% Sn a a b 100 + a primary C = 97.8 wt% Sn b a eutectic S b eutectic W a = 0.73 = R + S 0 20 40 60 80 100 W = 0.27 b 18.3 61.9 97.8 Co, wt% Sn • 18.3 wt% Sn < Co < 61.9 wt% Sn • Result: a crystals and a eutectic microstructure What is the fraction of Eutectica ? Pro-eutectic (primary) a ?

  32. Hypoeutectic & Hypereutectic hypoeutectic: Co = 50 wt% Sn hypereutectic: (illustration only) a b a b a a b b a b a b 175 mm 300 L T(°C) a L + a b b L + (Pb-Sn 200 TE System) a + b 100 Co, wt% Sn 0 20 40 60 80 100 eutectic 61.9 eutectic: Co=61.9wt% Sn 160 mm eutectic micro-constituent

  33. Mg2Pb Intermetallic Compounds In Previous Phase diagrams α and β are terminalsolid solutions Can we obtain other intermediate phases ? • Now: Mg2Pb • is an intermetallic compound • with a ratio (2:1) (Mg:Pb)-Molar • melts at a fixed temperature M • Cooling curve ??? Note: intermetallic compound forms a line - not an area like a ? Because stoichiometry (i.e. composition) is exact: Calculate ? Calculate Wt% Pb = 207 /(207+2(24.3)) X 100 = 81 %

  34. Same Story ? • No. and type of each phase • Composition of each phase • Relative amount or fraction of each phase • Distinguish between • primary phase • Eutectic phase • Microstructure • Cooling Curves • Fill the regions with types of phases?

  35. cool cool cool heat heat heat • Eutectoid - solid phase in equilibrium with two solid phases • S2S1+S3 •  + Fe3C (727ºC) intermetallic compound - cementite • Peritectic - liquid + solid 1 solid 2 (Fig 9.21) • S1 + LS2 •  + L (1493ºC) Eutectoid & Peritectic Phase Reactions • Eutectic - liquid in equilibrium with two solids L + 

  36. Complex Phase Diagrams α and η are terminal solid solutions - β, β’, γ, δ and ε are intermediate solid solutions. • new phenomena exist: ……… reaction ………. reaction

  37. Peritectic transition  + L Eutectoid transition  +  Eutectoid & Peritectic Cu-Zn Phase diagram

  38. Eutectic Reaction Eutectoid Reaction Our Interest In Fe-C phase diagram Phase Diagram with Eutectoid Phase Reactions The eutectoid (eutectic-like in Greek) reaction is similar to the eutectic This phase diagram includes both:

  39. T(°C) 1600 d -Eutectic (A): L 1400 Þ g + L Fe3C g +L g A 1200 L+Fe3C 1148°C -Eutectoid (B): (austenite) R S g Þ a + Fe3C g g 1000 g +Fe3C g g a Fe3C (cementite) + 800 B g a 727°C = T eutectoid R S 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 4.30 0.76 Co, wt% C (Fe) 120 mm Fe3C (cementite-hard) Result: Pearlite = alternating layers of eutectoid a (ferrite-soft) a and Fe3C phases C Iron-Carbon (Fe-C) Phase Diagram • 2 important points

  40. Development of Microstructure in Iron-Carbon alloysPearlite Structure By Diffusion Note: remember the names!Austenite, ferrite, cemetite and pearlite

  41. T(°C) 1600 d L 1400 (Fe-C g +L g g g System) 1200 L+Fe3C 1148°C (austenite) g g g 1000 g g +Fe3C g g Fe3C (cementite) r s 800 a g g 727°C a a a g g R S 600 a +Fe3C w = s /( r + s ) a w = (1- w ) g a 400 0 1 2 3 4 5 6 6.7 a Co, wt% C (Fe) C0 0.76 pearlite w = w g pearlite Hypoeutectoid 100 mm w = S /( R + S ) a steel w = (1- w ) a Fe3C pearlite proeutectoid ferrite Hypoeutectoid Steel

  42. T(°C) 1600 d L 1400 (Fe-C g +L g g g System) 1200 L+Fe3C 1148°C g g (austenite) g 1000 g g +Fe3C g g Fe3C (cementite) Fe3C s r 800 g g a g g R S 600 a +Fe3C w = r /( r + s ) Fe3C w =(1- w ) g Fe3C 400 0 1 2 3 4 5 6 6.7 Co, wt%C (Fe) pearlite w = w g pearlite w = S /( R + S ) a Hypereutectoid 60mm steel w = (1- w ) a Fe3C pearlite proeutectoid Fe3C Hypereutectoid Steel Co 0.76

  43. Phases in Fe–Fe3C Phase Diagram α -ferrite - solid solution of C in …….. Fe • Stable form of iron at room temperature. • The maximum solubility of C is 0.022 wt% (interstitial solubility) • Soft and relatively easy to deform γ -austenite - solid solution of C in …….. Fe The maximum solubility of C is 2.14 wt % at 1147°C. Interstitial lattice positions are much larger than ferrite (higher C%) Is not stable below the eutectic temperature (727 °C) unless cooled rapidly (Chapter 10). δ -ferrite solid solution of C in ……. Fe The same structure as α -ferrite Stable only at high T, above 1394 °C Also has low solubility for carbon (BCC) + Fe-C liquid solution Fe3C (iron carbide or cementite) This intermetallic compound is metastable, it remains as a compound indefinitely at room T, but decomposes (very slowly, within several years) into α -Fe and C (graphite) at 650 - 700 °C

  44. Example: Phase Equilibria For a 99.6 wt% Fe-0.40 wt% C at a temperature just below the eutectoid, determine the following • composition of Fe3C and ferrite () • the amount of carbide (cementite) in grams that forms per 100 g of steel • the amount of pearlite and proeutectoid ferrite ()

  45. CO = 0.40 wt% CCa = 0.022 wt% CCFe C = 6.70 wt% C 3 1600 d L 1400 T(°C) g +L g 1200 L+Fe3C 1148°C (austenite) 1000 g +Fe3C Fe3C (cementite) 800 727°C R S 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 CO C Co, wt% C CFe C 3 Example – Fe-C System a) composition of Fe3C and ferrite () • the amount of cementite in grams that forms per 100 g of steel

  46. 1600 d L 1400 T(°C) g +L g 1200 L+Fe3C 1148°C (austenite) 1000 g +Fe3C Fe3C (cementite) 800 727°C R S pearlite = 51.2 gproeutectoid  = 48.8 g 600 a +Fe3C 400 CO 0 1 2 3 4 5 6 6.7 C C Co, wt% C Chapter 9 – Phase Equilibria • the amount of pearlite and proeutectoid ferrite () note: amount of pearlite = amount of g just aboveTE Co = 0.40 wt% CCa = 0.022 wt% CCpearlite = C = 0.76 wt% C Pearlite include ? Eutectoid Fe3C + Eutectoidferrite a

  47. • Teutectoid changes: • Ceutectoid changes: (wt%C) Ti Si Mo (°C) Ni W Cr Cr eutectoid Eutectoid Si Mn W Mn Ti Mo C T Ni wt. % of alloying elements wt. % of alloying elements Alloying Steel with More Elements

  48. Summary • Phase diagrams are useful tools to determine: --the number and types of phases, --the wt% of each phase, --and the composition of each phase for a given T and composition of the system. • Alloying to produce a solid solution usually --increases the tensile strength (TS) --decreases the ductility. • Binary eutectics and binary eutectoids allow for a range of microstructures.

More Related