330 likes | 427 Views
CINEMÁTICA M ovimiento R ectilíneo U niformemente A celerado ( MRUA ) O. MOVIMIENTO UNIFORMEMENTE ACELERADO. ( MUA ). MOVIMIENTO CON VELOCIDAD VARIABLE. ACELERACIÓN.
E N D
CINEMÁTICAMovimiento RectilíneoUniformemente Acelerado(MRUA)O MOVIMIENTO UNIFORMEMENTE ACELERADO. (MUA)
MOVIMIENTO CON VELOCIDAD VARIABLE. ACELERACIÓN. Es el cambio de la velocidad respecto al tiempo. El cambio puede ser que disminuya o aumente la velocidad o bien que cambie su dirección. En el SI la unidad de aceleración es m/s2
La aceleración relaciona los cambios de la velocidad con el tiempo en el que se producen, es decir que mide cómo de rápidos son los cambios de velocidad: Una aceleración grande significa que la velocidad cambia rápidamente. Una aceleración pequeña significa que la velocidad cambia lentamente. Una aceleración cero significa que la velocidad no cambia. La aceleración nos dice cómo cambia la velocidad y no cómo es la velocidad. Por lo tanto un móvil puede tener una velocidad grande y una aceleración pequeña (o cero) y viceversa.
Descripción del movimiento. • La tabla anterior indica en varios instantes, los valores de la velocidad de un automóvil que se desplaza en una carretera plana y recta. • En que eje van las variables dependientes e independientes • ¿Cuál es la variación de la velocidad en cada uno de los intervalos de 1 segundo?¿Son iguales entre sí estas variaciones? ¿Cómo se clasificaría el movimiento? • ¿Cuál es el valor de la aceleración del automóvil?
Velocidad instantánea Lasvelocidades mediasrepresentanlapendiente de la rectasecantea la curva en los intervalos de tiempo considerados y sus respectivas posiciones. La información que proporciona la velocidad media solo es útil cuando el movimiento es rectilíneo uniforme. Como no es nuestro caso, se requiere generar un nuevo concepto: Velocidad instantánea El proceso para generarla es el siguiente. • En su gráfica elija un puntodonde desee conocer la velocidad instantánea (por ejemplo a los 6 s) • Calcule la pendiente de la recta secanteque une a ese punto que seleccionó y el último punto registrado en su gráfica (llámele vm6)
Velocidad instantánea • Tome un instante de tiempo anterior al último registrado, trace la recta secante entre ese punto y el seleccionado y calcule la pendiente de esa nueva recta secante (llámele vm5) . • Siga con el mismo procedimiento de tomar intervalos de tiempo cada vez menores y de calcular las pendientes de las rectas secantes. • Compare como son los intervalos de tiempo y las pendientes de las rectas secantes. • Siga con el mismo desarrollo de tomar intervalos de tiempo cada vez mas pequeños hasta que estos tiendan a cero (sin hacerse cero) y saque sus propias conclusiones. El procedimiento anterior se muestra en las siguientes gráficas
Velocidad instantánea Comparando podemos observar que satisfacen a mediada que el intervalo de tiempo tiende a cero. Pero los valores de la velocidad media no disminuyen arbitrariamente, se van acercado a unvalor limite. Estevalor limite es la velocidad instantáneaevaluada en el punto que tomamos como referencia.
Velocidad instantánea Gráficamente las rectas secantes tienden a una recta tangente x (m) * vm6 180 * Recta secante 140 vm = pendientes de las rectas secantes * 100 * 60 * punto elegido como referencia 20 * t (s) * l l l l l * l 8 12 14 10 4 6 2 0
Velocidad instantánea Gráficamente las rectas secantes tienden a una recta tangente x (m) * vm6 180 * vm5 Rectas secantes 140 vm = pendientes de las rectas secantes * 100 * 60 * punto elegido como referencia 20 * t (s) * l l l l l * l 8 12 14 10 4 6 2 0
Velocidad instantánea Gráficamente las rectas secantes tienden a una recta tangente x (m) * vm6 180 * vm5 Rectas secantes 140 vm = pendientes de las rectas secantes * vm4 100 * 60 * punto elegido como referencia 20 * t (s) * l l l l l * l 8 12 14 10 4 6 2 0
Velocidad instantánea Gráficamente las rectas secantes tienden a una recta tangente x (m) * vm6 180 * vm5 Rectas secantes 140 vm = pendientes de las rectas secantes * vm4 100 vm3 * 60 * punto elegido como referencia 20 * t (s) * l l l l l * l 8 12 14 10 4 6 2 0
Velocidad instantánea Gráficamente las rectas secantes tienden a una recta tangente x (m) * vm6 180 * vm5 Rectas secantes 140 vm = pendientes de las rectas secantes * vm2 vm4 100 vm3 * 60 * punto elegido como referencia 20 * t (s) * l l l l l * l 8 12 14 10 4 6 2 0
Interpretación gráfica de la velocidad instantánea . x (m) * 180 * 140 * 100 Recta tangente * 60 * Punto elegido como referencia 20 * * l l l l l * l 8 12 14 10 6 4 2 t (s) 0
Velocidad instantánea • En resumen se tiene un proceso para calcular lasvelocidades instantáneas a partir de una gráfica de x vs. t • Su valor, es el de la tangente (mejor conocida como pendiente)a la curva en el instante de tiempo en que deseamos conocerla. • En el contexto matemático, se define la velocidad instantánea como:
Velocidad instantánea Como ejemplo adicional calcule las velocidades instantáneas en los instantes de tiempo t = 0, 2, 4, 6, 8,10, 12 y 14 s (para ello, trace rectas tangentes a cada uno de esos instantes de tiempo) Sugerencia: Para calcular la pendiente de la recta tangente requiere de dos puntos (t, x).El primer punto es el punto elegido (donde la recta toca a la curva y lo puede leer en la tabulación de x vs. t). El segundo punto, haga que la recta tangente corte el eje horizontal, ahí, los datos para posición son (x = 0 m) y el tiempo léalo en ese mismo lugar. Aplique la fórmula para cálculo de pendientes
Cálculo gráfico de la velocidad instantánea . x (m) * 180 Recta tangente Punto donde queremos la velocidad instantánea * 140 * * 100 Primer punto * 60 20 * * l l l l l * l 8 12 14 10 6 4 2 t (s) 0 Segundo punto
Velocidad instantánea En función de sus cálculos, complete la siguiente tabla dev vs. t Ir a hipervínculo rectas tangentes , subir pantalla dejando la proyección en el pizarrón. Los alumnos pasan al pizarrón trazan las tangentes auxiliándose de una regla, toman datos y realizar los cálculos para llenar la tabla. Nota al profesor: en la siguiente diapositiva se presenta la tabla
Velocidad instantánea • Usted debió aproximarse a los siguientes valores • Como podrá observar la velocidad cambia de instante a instante.La pregunta que surge es ¿Cómo cambia la velocidad?
Aceleración Media Para describir como cambia la velocidad v (t) se define el concepto de aceleración media: El cual nos indica cuan rápido es el cambio de velocidad en el intervalo de tiempo Sus unidades son
Aceleración Media De la misma forma que con el desplazamiento y la velocidad, se tiene que la aceleración también puede ser positiva o negativa, depende de: si vf > v0 a > 0 acelerando si vf < v0 a < 0 frenando si vf < v0 a < 0 acelerando si vf > v0 a > 0 frenando
Aceleración Media En algunas situaciones el valor de la aceleración media puede ser diferente sobre intervalos de tiempo distintos. Por ese motivo, es útil definir la aceleración instantánea: la aceleración también puede escribirse como Es decir, en un movimiento en línea recta, la aceleración es igual a la segunda derivada de la posición de la partícula con respecto al tiempo.
Aceleración Media Regresemos al ejemplo anterior:
Aceleración Media Consideremos los cambios de velocidadDv = vf – v0 • Entre t2y t1 • Entre t3 y t2 • Entre t4 y t3
Aceleración Media • Entret5yt4 • Entret6yt5 • Entret7yt6
Aceleración Media Y las correspondientes aceleraciones medias • Entret2yt1 • Entret3yt2 • Entret4yt3
Aceleración Media Si evaluamos la aceleración media en los demás intervalos de tiempo la encontraremos igual a Este tipo de movimiento se conoce como: Rectilíneo Uniformemente Acelerado (MRUA) o con Aceleración Constante
Gráfica de v vs t En una gráfica de velocidad contra tiempo el valor de la pendiente de la recta es la aceleración.
Ecuaciones de M R U A De acuerdo con la definición de aceleración a = vf – v¡ /t o también a = v – v0 /t Se tiene que v = v0 + at , calculando el área bajo la curva el área corresponde a un trapecio. v vf vi t A = B + b/2 · h Lo que nos indica que Si se descompone la figura en rectángulo y en Triángulo el área del trapecio es igual a
Las ecuaciones Describen completamente al movimiento uniformemente acelerado o movimiento con aceleración constante. Ecuaciones de M R U A
Ecuaciones de M R U A Sin embargo es posible obtener a partir de éstas un par de ecuaciones mas: • Una de ellas relaciona el cambio de la posición con el cambio de velocidad y la aceleración. En ausencia del tiempo: • En la otra nos relaciona el cambio de la posición con velocidad y el tiempo, pero en ausencia de la aceleración: