1 / 8

ONDAS PERIODICAS

ONDAS PERIODICAS. Definición:.

Download Presentation

ONDAS PERIODICAS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ONDAS PERIODICAS

  2. Definición: La mayoría de las ondas son el resultado de muchas perturbaciones sucesivas del medio, y no sólo una. Cuando dichas perturbaciones se producen a intervalos regulares y son todas de la misma forma, estamos en presencia de una onda periódica, y el número de perturbaciones por segundo se denomina frecuencia de la onda.

  3. Estructura de la onda FRECUENCIA: Indica el número de veces que se repite en un segundo cualquier fenómeno periódico. Se mide en Hertz (Hz). PERIODO: Mínimo intervalo de tiempo invertido por un fenómeno periódico para volver a pasar por la misma posición. Se representa por T y se expresa en segundos.

  4. Las ondas periódicas son aquellas ondas que muestran periodicidad respecto del tiempo, es decir, describen ciclos repetitivos. En una onda periódica se cumple: donde el periodo propio fundamentalesta dado por: siendo F, la frecuencia de la componente fundamental de la onda periódica y nun número entero.

  5. La onda sinusoidal: Toda onda periódica es, por definición, una onda determinista, por cuanto puede ser descrita matemáticamente (mediante un modelo matemático). La forma más simple de onda periódica es la onda armónica (sinusoidal), que se describe matemáticamente como: Esta onda está completamente caracterizada por tres parámetros: es la amplitud de la sinusoide, es la frecuencia en radianes por segundo (rad/s), y es la fase en radianes. En lugar de , a menudo se utiliza la frecuencia ciclos por segundo o hercios (Hz), donde

  6. Series de Fourier: El modelo descrito para las ondas armónicas no sirve para describir estructuras periódicas más complicadas: las ondas anarmónicas. Joseph Fourier demostró que las ondas periódicas con formas complicadas pueden considerarse como suma de ondas armónicas (cuyas frecuencias son siempre múltiplos enteros de la frecuencia fundamental). Así, supongamos que representa el desplazamiento periódico de una onda en una cierta posición. Si y su derivada son continuas, puede demostrarse que dicha función puede representarse mediante una suma del tipo:

  7. Otros principios de la serie: El proceso de determinación matemática de los coeficientes y las constantes de fase para una forma de onda dada se llama análisis de Fourier. Al igual que una forma de onda periódica puede analizarse como una serie de Fourier mediante las contribuciones relativas de la frecuencia fundamental y los armónicos superiores presentes en la forma de onda, también es posible construir nuevas formas de onda periódicas, sumando a la frecuencia fundamental distintas contribuciones de sus armónicos superiores. Este proceso se denomina síntesis de Fourier. Es importante notar que para las señales de ancho de banda limitado (en la práctica, todas las de interés en Telecomunicaciones), la suma de armónicos es también finita:

  8. Ejemplo de la onda cuadrada: El caso más simple, de una onda armónica, es un caso particular para un único armónico Otros casos requieren un número infinito de armónicos que sólo pueden existir en sus formas perfectas como abstracciones matemáticas debido a que en la naturaleza no se pueden crear o transmitir señales de ancho de banda infinito. Sin embargo, incluso sus aproximaciones (descritos como la suma de un número limitado de armónicos) son de gran interés en la práctica, especialmente en Telecomunicaciones. Entre estos casos de señales periódicas compuestos por infinitos armónicos se encuentran las ondas cuadradas (onda compuesta exclusivamente por armónicos impares cuya amplitud en inversamente proporcional al número de armónico, es decir,

More Related