250 likes | 634 Views
ČASOVÉ RADY. 1. časť. PREDNÁŠKA. časové rady čo je časový rad rozdelenie ČR elementárne charakteristiky ČR zložky ČR analýza trendu v ČR. Čo je časový rad. údaje o skúmanom sociálno-ekonomickom jave chronologicky usporiadané v čase údaje v ČR musia byť porovnateľné:
E N D
ČASOVÉ RADY 1. časť
PREDNÁŠKA • časové rady • čo je časový rad • rozdelenie ČR • elementárne charakteristiky ČR • zložky ČR • analýza trendu v ČR
Čo je časový rad • údaje o skúmanom sociálno-ekonomickom jave chronologicky usporiadané v čase • údaje v ČR musia byť porovnateľné: • časovo - sú dané za rovnako dlhé časové obdobia • priestorovo - sú dané za tie isté územné celky • vecne - sú rovnako vecne definované • majú rovnakú obsahovú náplň • sú v rovnakých merných jednotkách • sú získané rovnakým spôsobom
Časové rady - označenie • Označme hodnoty skúmaného ukazovateľa: y1, y2 , y3 , ... yt …… yT, • kde: t = 1, 2, …. T, pričom T je počet období, • t je teda formálna časová premenná, ktorá udáva poradie hodnoty skúmaného ukazovateľa yt - HNP SR na obyv. v období rokov 1996-2000 v US$
Typy časových radov • podľa dĺžky obdobia, za ktoré skúmame hodnoty ukazovateľa, resp. dĺžky intervalu medzi jednotlivými skúmaniami ČR členíme na: • dlhodobé – ročné údaje, resp. päťročné • krátkodobé – kvartálne, mesačné, jednodňové údaje a pod.
Typy časových radov • podľa charakteru obsiahnutých dát • ČR absolútnych veličín (priamo zmeraných) • intervalových • viažu sa k celému obdobiu - intervalu • produkcia, tržby, počet poistných udalostí • možno ich v čase jednoducho sčítať, kumulovať • okamihových • vzťahujú sa iba k určitému okamihu napr. k prvému alebo poslednému dňu v období • stav obyvateľstva, počet poistných zmlúv k určitému dňu a pod.
Typy časových radov • ČR odvodených veličín (vypočítaných z absolútnych veličín) • pomerných hodnôt • časové rady indexov a iných pomerových ukazovateľov • ČR indexu vývoja na burze, miery nezamestnanosti a pod. • priemerných hodnôt • ČR priemerov za jednotlivé obdobia • vývoj priemerných miezd v SR
Rozbor časového radu • ČR - dôsledok pôsobenia podstatných a nepodstatných činiteľov na skúmaný sociálno-ekonomický jav • tieto činitele môžeme rozčleniť na: • trendové • periodické • cyklické -dlhodobé • sezónne - krátkodobé • náhodné • na základe tohto rozčlenenia môžeme dekomponovať ČR na jednotlivé zložky
Zložky časového radu • vychádza sa z empirického poznania, že ČR môže obsahovať tieto zložky: • trendovú zložku (Tt) - hlavná tendencia dlhodobého vývoja časového radu • periodickú zložku, ktoré spôsobujú pravidelné kolísanie hodnôt ČR okolo trendu, môžeme ich rozdeliť na: • sezónnu zložku (St) • pravidelne sa opakujúca odchýlka od trendovej zložky • vyskytujúca v ČR s periodicitou kratšou ako jeden rok • cyklickú zložku (Ct) • dlhodobé kolísanie okolo trendu s periódou dlhšou ako jeden rok, napr., hospodársky cyklus • náhodnú zložku (t) • nemožno ju popísať nijakou funkciou • zdrojom sú neznáme, nevysvetliteľné vplyvy
Analýza časových radov • Úlohy analýzy časových radov • popis časového radu • pomocou klasických popisných štatistík - priemer, max, min … • pomocou špeciálnych charakteristík časového radu • analýza a vysvetlenie vývoja časového radu • najdôležitejšia úloha • analýza ČR sa snaží vysvetliť vývoj ČR pomocou jeho závislosti od: • časového faktora • iných časových radov • tieto závislosti sú prezentované vo forme konkrétnych matematických rovníc a formúl - tzv. model ČR • prognózovanie budúcich hodnôt ČR • ak závislosti vo vývoji časového radu pochopíme a dôveryhodne popíšeme, môžeme predpokladať jeho budúci vývoj • model ČR použijeme na výpočet prognózy
Oboznámenie sa s vývojovýmitendenciami v ČR Matematické vyjadrenie závislosti ČR od času alebo iných ČR Odhad modelu Overenie dôveryhodnosti matematického vyjadrenia závislostí Posúdeniekvality Výpočet prognózy Využitie matematických formúl na odhad budúceho vývoja Analýza časových radov • Postup analýzy časových radov Popísanie časového radu
Popis časových radov • Základné charakteristiky časových radov • absolútne • absolútny prírastok • prvé diferencie • rozdiel dvoch po sebe idúcich hodnôt ČR • spomalenie, zrýchlenie ČR • druhé diferencie • rozdiel po sebe idúcich absolútnych prírastkov
Popis časových radov • Základné charakteristiky časových radov • relatívne • koeficient rastu • podiel dvoch po sebe idúcich hodnôt • vyjadrenie v percentách sa nazýva tempo rastu • na koľko násobok predchádzajúcej hodnoty vzrástol ČR • koeficient prírastku • je koeficient rastu zmenšený o jednotku • vyjadrenie v percentách sa nazýva tempo prírastku • o koľko percent v porovnaní s predchádzajúcou hodnotou vzrástol ČR
Popis časových radov • Základné charakteristiky časových radov • priemerné • absolútne • priemerný absolútny prírastok • hodnotenie absolútneho vývoja za celý časový rad • ako aritmetický priemer absolútnych prírastkov • relatívne • priemerný koeficient rastu • hodnotenie relatívneho vývoja za celý časový rad • ako geometrický priemer
Vývoj HNP SR za rr.95-99 v US$ na obyv. a rok V roku 1997 oproti r. 96 vzrástol HNP na obyv. na 108,12% V roku 1997 oproti r. 96 vzrástol HNP na obyv. o 8,12%
Priemerný koeficient rastu Z jednotlivých koeficientov rastu možno vypočítať: priemerný koeficient rastu _ 4 k = (1,148.1,081. 1,003 . 0,974) = 1.0493 Za obdobie rr. 95-99 HNP v SR rástol ročne približne o 4,9%
Modelovanie časových radov • ČR rozkladáme na tri zložky: • trendovú (Tt) • periodickú (Ct), resp. sezónnu (St) • náhodnú (Et) • ak platí Yt= Tt + St + Ct + Et aditívny model • ak platí Yt= Tt . St . Ct . Et multiplikatívny model
Analýza trendu v časovom rade • pri dekompozičnom prístupe je analýza trendu založená: • na analytickom vyrovnaní vývoja hodnôt skúmaného ukazovateľa vhodnou trendovou funkciu • ide o analógiu jednoduchej regresnej analýzy, pričom odhadované hodnoty sú funkciou časovej premennej t yt´= f(t) • trendová funkcia je potom použitá nielen ku hodnoteniu kvality prognózy “ex-post”, ale aj na prognózy “ex-ante”
Prehľad modelov časových radov • Trendové funkcie • vyjadrujú trend ako deterministickú funkciu času • lineárny trend • najjednoduchší tvar závislosti • priamo úmerná závislosť medzi trendovou hodnotou ČR a hodnotou časovej premennej • kvadratický trend • trendová hodnota ČR závisí od hodnoty časovejpremennej aj od jej druhej mocniny
Prehľad modelov časových radov • logaritmický trend • trendová hodnota ČR závisí od logaritmu času • hyperbolický trend • trendová hodnota ČR závisí od prevrátenejhodnoty času • exponenciálny trend • trendová hodnota ČR závisí od exponenciálnejhodnoty času
Štatistické posúdenie vhodnosti trendovej funkcie • pomocou indexu korelácie iyt, resp. indexu determinácie iyt2, ktoré vyjadrujú kvalitu prognózy “ex-post” • prioritné je však vecné posúdenie vhodnosti trendovej funkcie, pretože je potrebné zvažovať ako sa “asi” môže skúmaný ukazovateľ v budúcich obdobiach vyvíjať
Prognózovanie časových radov • hľadáme dôveryhodné matematické vyjadrenie - model pre zložky ČR • použijeme ho na výpočet prognózy • prognóza - odhad budúcich hodnôt ČR • vypočítaný na základe matematickej funkcie modelu • yt=b0+b1t t=1,2, ..., T • prognóza: yt=b0+b1t, pre t=T+1 yt=b0+b1t, pre t=T+2, ..... • horizont prognózy • dĺžka obdobia, pre ktoré odhadujeme budúce hodnoty • praktický význam: horizont prognózy = 1/3 dĺžky časového radu