150 likes | 281 Views
Techniques d’étude des interactions protéine-protéines à grande échelle. Hervé PHILIPPE BIN1001 – hiver 2006. Pourquoi étudier les interactions protéine-protéine ?. beaucoup de matériel à disposition focus sur l’étude des fonctions cellulaires capacité des protéines à former des complexes
E N D
Techniques d’étude des interactions protéine-protéines à grande échelle Hervé PHILIPPE BIN1001 – hiver 2006
Pourquoi étudier les interactions protéine-protéine ? • beaucoup de matériel à disposition • focus sur l’étude des fonctions cellulaires • capacité des protéines à former des complexes • ≈5 partenaires pour chaque protéine • importance des complexes protéiques dans l’aspect fonctionnel interactome
De nombreuses techniques d’étude Piehler J. Curr.Op.Struct.Biol. 2005; 15:4-14 • in vivo • maintien du contexte cellulaire • in vitro • caractérisation détaillée des interactions • (cinétique, stochiométrie …) • validation des résultats in vivo
Co-immunoprécipitation http://www.piercenet.com/Proteomics/browse.cfm?fldID=9C471132-0F72-4F39-8DF0-455FB515718F
Double hybride Principe : • utilisation de facteurs de transcription modulaires chez la levure • domaine d’activation • domaine de liaison à l’ADN • fusion des protéines à tester chacune avec un module du facteur de transcription • expression du produit de transcription si les protéines testées interagissent
DA prot 3 prot 2 prot 1 DL DL mARN Double hybride Système rapporteur DA : domaine d’activation DL : domaine de liaison à l’ADN DA TF DL colonies de levures pas d’expression expression du gène mARN Fusion protéines et modules du facteur de transcription Expression du système
Double hybride Fields S. & Song O. Nature. 1989; 340:245-246. Avantages : • expérience facile à mettre en place Inconvénients : • analyse qualitative • faux positifs si les interactions préexistent chez la levure • faux négatifs : problème d’expression des protéines cibles chez la levure • non applicable aux protéines membranaires (30% du protéome) Application : • identification des interactions • criblage de banque de protéines
Interactome chez C. elegans Li S. et al.; Science 2004; 303:540–543
PCA : protein fragment complementation assay Johnsson N & Varshavsky A. PNAS. 1994; 91:10340-10344 Michnick SW. Curr Opin Biotechnol. 2003;14(6):610-7 Principe : • rapporteur (enzyme ou protéine fluorescente) • fractionnement du rapporteur + fusion aux protéines à tester • mesure de la reconstitution du rapporteur si les protéines testées interagissent
PCA : protein fragment complementation assay Avantages : • applicable pour les protéines membranaires • réponse très rapide Inconvénients : • décalage temporel de la réponse au signal d’expression • nombreux faux positifs : accumulation du substrat et du produit de la réaction enzymatique Application : • identification des interactions • étude des réseaux d’interaction
R0 10-70 Å excitation émission accepteur 525 nm 475 nm nm 475 FRET (fluorescence resonance energy transfer) L. Stryer; Annu Rev Biochem 1978; 47: 819–846 donneur 525 Principe : • excitation d’un fluorophore donneur par un photon • émission fluorescence par le donneur • excitation du fluorophore accepteur s’il est suffisamment proche • mesure du rapport de fluorescence
FRET (fluorescence resonance energy transfer) Avantages : • étude dynamique en temps réel • applicable in vivo dans le système cellulaire originel • peut être couplé à un signal biologique • applicable dans tous les compartiments cellulaires Inconvénients : • création de protéines chimériques qui peuvent modifier les interactions • nécessite la surexpression des protéines testées Application : • signification biologique des interactions • localisation cellulaire par couplage avec des techniques de microscopie
TAP-Tag : Tandem Affinity Purification tag Principe : 1. peptide de fixation à la calmoduline domaines de fixation de la ProtA aux IgG site de clivage à la TEV protéase 2. • constitution du complexe protéique in vivo puis lyse des cellules • fixation du complexe via la ProtA sur la colonne d’affinité et élution douce des contaminants • clivage du tag par la protéase • fixation du complexe via le peptide de fixation à la calmoduline et élution douce des contaminants résiduels et de la protéase • élution du complexe et analyses subséquentes 3. 4. 5. Puig O. et al.; Methods 2001; 24:218–229
Spectrométrie de masse Gingras et al. (2005) J Physiol 563:11-21 Inconvénients : • nécessite la purification des complexes • méthode compliquée et coûteuse Application : • identification des protéines présentes dans un complexe
TAP-Tag : Tandem Affinity Purification Avantages : • seul l’appât est modifié, pas les autres protéines du complexe • taux d’expression biologique des protéines • identification de complexes avec plus de 2 protéines Inconvénients : • seules les interactions très stables peuvent être détectées Application : • identification des complexes protéiques