1 / 51

What did we learn at RHIC?

原子核・ハドロン物理:横断研究会. What did we learn at RHIC?. Tetsufumi Hirano Dept. of Physics The University of Tokyo. 「原子核・ハドロン物理: 横断 研究会」におけるレビュー講演  原子核の他分野の方々に当該分野の 現状を報告 SPIRESを使って引用数の多いRHIC実験論文を理論屋(現象論屋)の立場から眺めてみよう。 良い点:限られた時間で(客観的に)重要なトピックスに絞れる 悪い点:最新の結果に触れられない (私個人として、)何が分かって、何を目指すべきか。.

zlata
Download Presentation

What did we learn at RHIC?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 原子核・ハドロン物理:横断研究会 What did we learn at RHIC? Tetsufumi Hirano Dept. of Physics The University of Tokyo

  2. 「原子核・ハドロン物理:横断研究会」におけるレビュー講演  原子核の他分野の方々に当該分野の現状を報告 SPIRESを使って引用数の多いRHIC実験論文を理論屋(現象論屋)の立場から眺めてみよう。 良い点:限られた時間で(客観的に)重要なトピックスに絞れる 悪い点:最新の結果に触れられない (私個人として、)何が分かって、何を目指すべきか。 My Charge(?)

  3. What is RHIC? Relativistic Heavy Ion Collider(2000-) front view STAR side view STAR Purpose: Create a transient state of the QGP at high temperature and energy density in a laboratory and investigate its property.

  4. これまでのRUN 加速器側で制御できる のはせいぜい当てる原 子核とエネルギー • Size dependence • Energy dependence • Control experiment • (spin) 織田さん(CNS)のトーク@RCNP(‘07)から

  5. FIND CN *** AND TOPCITE 100+*** = STAR, PHENIX, PHOBOS, BRAHMS (as of Nov.15,2007) カッコ内はそのうちTOPCITE 250+

  6. Dynamics of Heavy Ion Collisions Freezeout “Re-confinement” Expansion, cooling Thermalization First contact (two bunches of gluons) Time scale 10fm/c~10-23sec <<10-4(early universe) Temperature scale 100MeV~1012K

  7. y Ncoll & Npart Thickness function: x Gold nucleus: r0=0.17 fm-3 R=1.12A1/3-0.86A-1/3 d=0.54 fm Woods-Saxon nuclear density: # of binary collisions # of participants sin = 42mb @200GeV 1-(survival probability)

  8. Centrality (検出器側の制御) Au+Au 200 GeV • Npart and Ncoll as a function • of impact parameter • Categorize events with • Npart or Ncoll PHENIX: Correlation btw. BBC and ZDC signals

  9. FIND CN *** AND TOPCITE 100+*** = STAR, PHENIX, PHOBOS, BRAHMS (as of Nov.15,2007) カッコ内はそのうちTOPCITE 250+

  10. Centrality Dependence of Multiplicity PHOBOS,PRC65,061901(’02) Cited 105 times PHENIX, PRL86,3500(‘01) Cited 194 times • EKRT: final state saturation (Eskola et al.) • HIJING: event generator (string+jet) (Wang-Gyulassy) • Saturation Model: color glass condensate (Kharzeev-Levin) • Nch ~ 5000(700) in very central collisions (at midrapidity) • ~90% from soft particle production • Serves a severe test for models of particle production

  11. Energy Density Bjorken formula (’83) Volume of cylinder ec from lattice Sorry, I could not find the original paper. PHENIX, PRL87,052301(’01) Cited 121 times • Assuming t=1fm/c, well above ec from lattice in central collision at RHIC • Necessary condition to study the QGP at RHIC

  12. Particle Relative Yield STAR, PRL92,112301(’04) Cited 161 times STAR,NPA757,102(’05) Cited 408 times • Tch = 157 +- 6 MeV, mB = 22 +- 4 MeV • Really equilibrated in peripheral collisions? • Just fitting parameters?

  13. pT spectra Blast wave model (thermal+boost) PHENIX, PRC69,034909(’04) Cited 268 times • Blue-shifted spectra are evidence of radial flow • Blast wave model gives b = 0.48+-0.07 in 0-5% bin. • Quantitative interpretation needs dynamical model.

  14. FIND CN *** AND TOPCITE 100+*** = STAR, PHENIX, PHOBOS, BRAHMS (as of Nov.15,2007) カッコ内はそのうちTOPCITE 250+

  15. What is Elliptic Flow? J.Y.Ollitrault,PRD46,229 (’92) How does the system respond to spatial anisotropy? No secondary interaction Hydro behavior y f x INPUT Spatial Anisotropy 2v2 Interaction among produced particles dN/df dN/df OUTPUT Momentum Anisotropy 0 f 2p 0 f 2p

  16. Multiplicity Dependence of v2 Response = (output)/(input) P.F.Kolb et al.,PRC62,054909(’00) Particle Density • Experimental data reach • “hydrodynamic limit” • for the first time at RHIC • But, only one data point? STAR, NPA757,184(’05) Cited 410 times STAR, PRC66,034904(’02) Cited 162 times

  17. pT dependence of v2 PHENIX,PRL91,182301(’03) Cited 242 times STAR, PRC72,014904(’05) Cited 127 times Hydro calculations: P.Huovinen • A hydrodynamic model based on perfect fluids • reasonably describes pi, K, p, Lambda data • in low pT region. • How small is viscosity? • How fragile/robust?  See our recent papers

  18. Hydrodynamic Model Final stage: Free streaming particles  Need decoupling prescription t Intermediate stage: Solve energy-momentum conservation.  Need EoS and/or transport coefficients z 0 • Initial stage: • Particle production, • pre-thermalization, instability? • Instead, initial conditions for hydro simulations

  19. FIND CN *** AND TOPCITE 100+*** = STAR, PHENIX, PHOBOS, BRAHMS (as of Nov.15,2007) カッコ内はそのうちTOPCITE 250+

  20. Two-Particle Correlation Function C2 F Bertsch-Pratt equation • Inverse problem to get source information

  21. Bertsch-Pratt parameterization Bird’s eye view View from beam axis p1 Rside y KT q Rlong p2 Rout x reaction plane z l C2 Two-pion correlation function 1/R 1 q

  22. KT Dependence of HBT Radii PHENIX, NPA757,184(’05) Cited 410 times PHENIX, PRL88,192302(’02) Cited 128 times STAR, PRL87,082301(’01) Cited 193 times Hydro(-based) calculation Soff, Kolb,Hirano,… • Hydro models do not give correct source sizes. • HBT puzzle in a narrow sense • Last interaction point  Hydro description is not valid.

  23. FIND CN *** AND TOPCITE 100+*** = STAR, PHENIX, PHOBOS, BRAHMS (as of Nov.15,2007) カッコ内はそのうちTOPCITE 250+

  24. Tomography CT (computed tomography) scan • “Tomography” • Known probes: Spectra reliably calculable via pQCD • Good detector: RHIC experiments! • Interaction btw. probes and unknowns: • Recent development in this field *平野哲文、浜垣秀樹、「ジェットで探るクォークグルーオンプラズマ」、日本物理学会誌2004年12月号

  25. Jet Tomography Tool 1. Jet quenching Bjorken(’82) Gyulassy,Plümer Wang (’90) g g 180 deg. correlation? g High “density” matter Bjorken(’82) Appel (’86) Blaizot & McLerran (’86) Tool 2. Jet acoplanarity

  26. Nuclear Modification Factor • Au+Au 0-10% central • b=2.8 fm • Ncoll = 978 • Npart = 333 • Npart/Ncoll = 0.341 (null result) binarycollisionscaling 1 RAA participant scaling 0.341 pT

  27. High pT Spectrum in pp Collisions • NLO pQCD works at RHIC • Important for AA collisions • Serves a reference spectrum PHENIX, PRL91,241803(’03) Cited 193 times

  28. Nuclear Modification Factor charged PHENIX, PRL88,022301(‘02) Cited 402 times STAR, PRL89,202301(’02) Cited 292 times • RAA < 1 for the first time at RHIC • Significant suppression in central collisions

  29. Di-hadron Distribution 4<pT,trigger<6 GeV/c 2 GeV/c<pT,associate<pT,trigger ??? STAR, PRL90,082302(’03) Cited 341 times • Disappearance of away-side peaks in central collisions • Away side jet may be gone.

  30. Initial vs. Final I.Vitev and M.Gyulassy, PRL89, 252301(‘02) D.Kharzeev et al., PLB561, 93(‘03). • Saturation  Npart scaling • (Later, ∃Cronin peak even within CGC) • ggg (no back-to-back) • Jet quenching • dNg/dy =500-1200 @ RHIC Importance of pA (dAu) collisions

  31. Results from d-Au Collisions STAR,PRL91,072304(’03) Cited 314 times PHENIX, PRL91,072303(’03) Cited 276 times

  32. Results from d-Au Collisions BRAHMS, PRL91,072305(’05) Cited 204 times PHOBOS, PRL91,072302(’03) Cited 169 times • Neither suppression nor disappearance in d+Au • Jet quenching scenario turns out to be favored. • This does not mean saturation models • are killed.

  33. High pT at forward h=0 h=2.2 BRAHMS, PRL91,072305(’03) Cited 204 times • More suppression at forward, or initial state effect?

  34. Kinematic Effect Jet quenching Spectrum shift Ratio at a fixed pT. Different slope, but same shift “parallel shift” (1/pT)dN/dpT (1/pT)dN/dpT 0 0 pT pT • Rh can be less than unity. • But, insufficient to explain data TH and Y.Nara, PRC68,064902(’03)

  35. Saturation effect in d+Au? BRAHMS, PRL93,242303(’04) Cited 153 times • Forward rapidity  Small x in a nucleus • Manifestation of Color Glass Condensate?

  36. Cronin Peak  Suppression preliminary y=0,1,2,3 D.Kharzeev et al.,PRD68,094013(’03); PLB599,23(’04). H.Fujii, talk at RCNP workshop(’07) • Cronin peak disappears as moving away from • midrapidity. • Qualitatively consistent with data

  37. Di-Hadron spectra revisited STAR,PRL95,152301(’05) Cited 131 times PHENIX, PRL97,052301(’06) Cited 143 times 4.0<pT,trigger<6.0 GeV/c 0.15<pT,associated<4.0 GeV/c 2.5<pT,trigger<4.0 GeV/c 1.0<pT,associated<2.5 GeV/c • Where does the lost energy go? • Mechanism? (Mach cone? Deflected jets?)

  38. FIND CN *** AND TOPCITE 100+*** = STAR, PHENIX, PHOBOS, BRAHMS (as of Nov.15,2007) カッコ内はそのうちTOPCITE 250+

  39. No Suppression for Baryons C.Seife, Science298, 718(2002)

  40. Baryon Enhancement PHENIX, PRL91,172301(’03) Cited 126 times PHENIX, PRC69,034909(’04) Cited 268 times • Baryons are not suppressed in intermediate pT • Mechanism of enhancement?

  41. Recombination as a Third Component Soft-Soft recombination Low pT (bulk, hydro) “Third Component” Intermediate pT (~2-5 GeV/c) Recombination High pT (fragmentation) Soft-Hard Coalescence

  42. Elliptic Flow Scaling meson(n=2) q + qbar meson = baryon(n=3) q q + STAR, PRC72,014904(’05) Cited 127 times q + baryon = Voloshin(’02), Molnar, Lin(’03), Fries,Nonaka,Muller,Bass(’03),Hwa,Yang(’04),Pratt,Pal(’05)…

  43. Summary • One day experimentで、粒子生成メカニズムに制限をつけることができる。素朴な2成分モデルでは、ソフトな生成は90%近い。 • 中心衝突では、エネルギー密度は十分格子QCDから予言されている臨界値を超えている。~5GeV/fm3 @ τ=1fm/c • 化学平衡が切れる温度は160MeV程度。擬臨界温度に近い。 • 光速の50%近い横膨張速度が得られている。大きな圧力(勾配)。 • 完全流体QGPを仮定したダイナミクスと楕円型フローの実験結果がよく合う。 • HBT半径は流体模型では合わない。 • ミニジェットの収量は中心衝突では20%程度まで減っており、終状態相互作用の結果である。 • 前方ラピディティでは、作られたミニジェットが減っており、CGCの発展方程式の振る舞いとコンシステント。 • 消えた後方ジェットは、マッハ錐状(?)に出ている。 • バリオンの収量は中間横運動量領域(2-6GeV/c)で減らない。楕円型フローのスケーリング的振る舞いから、クォーク再結合模型が有力。 • 個々のモデルはそれなりにうまくいっている。 • しかし、統一的な記述は未だに得られず。

  44. Talk by T.Hallman @ ICHEP04

  45. contd.

  46. Inconsistency • Some hydro model does not reproduce relative yields.  Need chemical potential for hadrons  Importance of viscosity at a hadronic level (hadronic corona) • The number of partons obtained from jet tomography is smaller than that from hydro.  Need chemical non-equilibrium process in QGP fluids. • Energy per particle from CGC is larger than data.  Need pdV work (e.g., hydrodynamic approach) • CGC gives a large eccentricity at initial state and overshoot elliptic flow data as an initial condition for ideal hydro.  Need viscosity in QGP fluids • Twice larger radial flow to understand data in intermediate pT via recombination than the one obtained from hydro simulations.  Need quantitative and dynamical anaysis of recombination mechanism • …

  47. Current Status of Dynamical Modeling Geometric Scaling CGC “DGLAP region” Before collisions Transverse momentum Shattering CGC (N)LOpQCD Parton production Pre- equilibrium fluctuation Instability? Equilibration? • Parton energy loss • Inelastic (light) • Elastic (heavy) Interaction • Hydrodynamics • viscosity • non chem. eq. “Perfect” fluid QGP or GP Recombination Coalescence Dissipative hadron gas Hadronic cascade Fragmentation Proper time Low pT Intermediate pT High pT

  48. Our studies reduce model ambiguities • TH,PRL86,2754(’01);PRC65,011901(’02).  First realistic full 3D hydro. No Bjorken boost invariant ansatz. • TH and K.Tsuda, PRC65,061902(’02).  Introduce chemical freezeout in hydro. Get correct particle ratios and spectra simultaneously for the first time. • TH and Y.Nara, PRC66,041901(’02);PRL91,082301(’03); PRC68,064902(’03);PRC69,034908(’04).  Jet quenching in QGP fluids. Realistic matter profile for jet quenching analysis. • TH and Y.Nara, NPA743,305(’04). CGC initial condition in hydro. Remove some issues for initial conditions in hydro simulations. • TH and M.Gyulassy, NPA769,71(’06); TH et al., PLB636,299(’06).  Hadronic cascade after QGP evolution. Remove issues for final decoupling.

More Related