1 / 25

Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék

Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék MTA Vízgazdálkodási Kutatócsoport. Vízbázisvédelem EU VKI mennyiség. mennyiségi állapot. sós víz intrúzió teszt. FAVÖKO teszt

zorana
Download Presentation

Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék MTA Vízgazdálkodási Kutatócsoport Vízbázisvédelem EU VKI mennyiség

  2. mennyiségi állapot sós víz intrúzió teszt FAVÖKO teszt felszíni víz és szárazföldi vízmérleg teszt vízszint-süllyedés teszt jó Felszín alatti víztest állapota vízminőségi trend (kémia és hőmérséklet) FAVÖKO* teszt (felszíni víz és szárazföldi) szennyezési csóva teszt szennyezett terület teszt ivóvízbázis teszt gyenge A jó áll. fenntartása veszélyeztetett (kockázatos) kémiai állapot Víz Keretirányelv FAV állapotértékelés módszertana

  3. Víz Keretirányelv A felszín alatti vizek mennyiségi állapota Az igénybevételek hatását kell vizsgálni Közvetlen vízkivétel: kutakkal Közvetett vízkivétel: minden olyan beavatkozás, ami vízszintcsökkenéssel jár (pl. kavicsbánya, felszíni vízszint csökkentése)

  4. A mennyiségi állapot értékelése • A felszín alatti víztest mennyiségi szempontból jó állapotban van, ha • az igénybevétel, azaz a közvetett és közvetlen vízkivételek nem okoznak folyamatos készletcsökkenést (tendenciaszerűen csökkenő vízszinteket), • a felszín alatti vizekből származó táplálástól (alaphozamtól) jelentős mértékben függő vízfolyásokban a jó ökológiai és kémiai állapot elérését nem akadályozza az igénybevétel hatására csökkenő alaphozam, és annak minősége • az igénybevétel hatására csökkenő talajvízből származó transpiráció nem okozza a felszín alatti vizektől függő szárazföldi ökoszisztémák jelentős károsodását • az igénybevétel nem indít el a receptorok szempontjából káros vízminőség változást (nagy sótartalmú vizek átszívása, szennyezett talajvíz leszívása..stb)

  5. A mennyiségi állapot értékelése monitoring alapján (1) Van-e túl-igénybevétel, vagyis vannak-e olyan területek, ahol a vízszint tendenciaszerűen csökken? • vízszint idősorok + csapadék idősorok alapján •  olyan területek, ahol nem a csapadékhiány okozza • a süllyedést és a süllyedés kapcsolatba hozható • ismert közvetlen vagy közvetett vízkivétellel (2) Egyensúly (nincs süllyedő tendencia) esetén is kérdés, hogy a vízháztartásban bekövetkező változások nem káros mértékűek-e az ökoszisztémák számára? • élőhelyekre vonatkozó adatok •  a felszín alatti vizek állapotváltozásai miatt sérült • ökoszisztémák (3) Tapasztalható-e vízkivételek környezetében a sótartalom növekedése, vagya szennyezett talajvíz mélyebb rétegekbe történő leszivárgása? - ivóvízkivételi kutak sótartalmának növekedése? - ivóvízkivételi és megfigyelő kutak romló vízminőségi tendenciái?  olyan területek, ahol a vízminőségi változás oka a vízkivétel

  6. Tartós süllyedéssel jellemezhető területek termálvízadókban

  7. A mennyiségi állapot értékelése számítással VKI: Sokévi átlagban a vízkivételek nem haladják meg a hasznosítható készletet Hasznosítható készlet: Az utánpótlódás sokévi átlagos mértéke csökkentve a felszín alatti vizektől függő ökoszisztémák (FAVÖKO) vízigényével • A FAVÖKO-k felszín alatti vizekből származó vízigénye: • a felszíni vizek jó ökológiai állapotának eléréséhez szükséges • forráshozam és alaphozam, • illetve a vizes és szárazföldi ökoszisztémák • talajvízből származó párolgása Utánpótlódás: A víztestbe csapadékból, felszíni vízből és a vele szomszédos víztestekből belépő vízmennyiség

  8. A mennyiségi állapot értékelése számítással • Más megközelítés, szintén a VKI szerint: • A felszín alatti vizek szintjében emberi hatásra bekövetkező változások • nem veszélyeztethetik a kapcsolódófelszíni víztest jó ökológiai • és kémiai állapotát, • nem okozhatnak károsodást a szárazföldi ökoszisztéma állapotában Két különböző léptékű megközelítés: víztest szint élőhely szint

  9. Élőhelyekre vonatkozó részletes vizsgálatok Csak a felszín alatti vízháztartás és a biológiai sajátosságok (érzékenység) együttes elemzése lehet a jó megoldás

  10. FAVÖKO-k

  11. Felszín alatti vizektől függő ökoszisztémák vízigénye Vízfolyások: mederben hagyandó vízhozam a a halak számára szükséges vízmélység és sebesség alapján Sekély tavak : vízfelület párolása – csapadék (ezt a felszín alatti víz pótolja) Jelenleg, illetve cél: a terület %-ában Magas talajvízállású területek: a növényzet nyári túléléséhez szükséges vízmennyiség az erre alkalmas terület legalább felén

  12. Hasznosítható készlet (utánpótlódás – ökológiai vízigény)  vízkivétel

  13. Hasznosítható készlet (utánpótlódás – ökológiai vízigény)  vízkivétel Az ivóvízkivétel a legnagyobb: (47%) Öntözés főként illegálisan (18 %) A csatornákkal való megcsapolás jelentős (30%), helyenként >50%. m3/nap-ban

  14. Hazai szabályozás 219/2004-es Kormányrendelet a felszín alatti vizek védelméről http://www.kvvm.hu/szakmai/karmentes/jogszab/jogszab12/219_2004.htm • Vízkivételek nem haladhatják meg az ún. igénybevételi határértéket. • igénybevételi határérték: a víztestek lehatárolt zónáiban elvonható felszín alatti víz mennyisége, • a vízgyűjtő-gazdálkodási tervben szerepel Utánpótlódási területeken FAV nem használható felszíni víz pótlására Jó minőségű (!) felszín alatti víz csak kivételesen használható nem ivóvíz célra

  15. A VÍZMÉRLEG ELEMEI Természetes állapot v v v Qfelszíni Btv ETtv Qalap Qbe ΔV Qki ΔV/Δt = Btv – ETtv + Qbe – Qki + Qfelszíni – Qalap(forrás) = 0 (sokévi átlag)

  16. A VÍZMÉRLEG ELEMEI Kfav Vízkivétellel v v v Qfelszíni,k Btv,k ETtv,k Qalap,k Qbe,k ΔV Qki,k ΔV/Δt = Btv –ETtv + Qbe –Qki + Qfelszíni – Qalap(forrás) = 0 (sokévi átlag) Btv,k – ETtv,k + (Qbe,k– Qki,k + Qfelszíni,k – Qalap(forrás), k - Kfav= 0 ( nincs tartós süllyedés) A vízkivételt a vízmérleg egyéb elemeinek megváltozásai kompenzálják

  17. Vízforgalom szomszédos víztestekkel FAVÖKO vízigény Utánpótlódás Mennyire használhatjuk a szomszédos területek vízkészletét? Terület-használat, Természet-védelem Mederben hagyandó vízhozam A HASZNOSÍTHATÓ KÉSZLET ΔV/Δt = Btv – ETtv + Qbe – Qki + Qfelszíni – Qalap(forrás) = 0 (sokévi átlag) Btv,k – ETtv,k + (Qbe,k– Qki,k + Qfelszíni,k – Qalap(forrás), k - Kfav= 0 ( nincs tartós süllyedés) A vízkivételt a vízmérleg egyéb elemeinek megváltozásai kompenzálják Hasznosítható készlet Btv,h + Qfelszíni,h + Qbe ,– Qkih - ETtv, FAVÖKO– Qalap(forrás), FAVÖKO = HK Regionális vízkészlet-gazdálkodás, érdekeltekkel való egyeztetés!

  18. Élőhelyek azonosítása, megelőzés (a hasznosítható készlet területi megoszlása) Az ökoszisztémáktól függő területi korlátozások (Vízgyűjtő-gazdálkodási Terv!): egy adott körzeten belül a lehető legnagyobb + összes, ill. a hatásvizsgálat előírásának korlátja Részletes elemzések

  19. ÉGHAJLATVÁLTOZÁS

  20. Mi várható Európában 2100-ban? Éves átlag Dec, Jan, Feb Jún, Júl, Aug Hőmérséklet (oC) Csapadék (%) IPCC, 2007 és a Kárpát medencében? 3,3 oC 3,7 oC 3,5 oC Az átmeneti zónában vagyunk!!! 0 % + 7 % -10 %

  21. Várható változások a Kárpát medencében A nagyobb, mint 2K félgömbi hőmérsékletnövekedés tartományában a változások nem lineárisak – a csapadék akár nyáron is növekedhet A mediterrán klíma irányába való eltolódás (gyorsan!) tél: nedvesebb és enyhébb nyár: szárazabb és melegebb, szélsőségesen nagy csapadékok!!! Hasonló időszakok a múltban: 1984 - 2003 (bár ebben az időszakban a telek is általában szárazabbak voltak az átlagosnál )

  22. Várható változások a Kárpát medencében Hőmérséklet: 0,2 – 0,45 oC/évtized változás Csapadék: télen: 8 - 13 mm/oC növekedés nyáron: 10 - 12 mm/oC csökkenés Lehetséges párolgás: télen: 15 – 20 mm/ oC (~ 15 %) nyáron: 60 – 80 mm/oC (~ 10 %) Bartholy, Schlanger, Mika és Domonkos nyomán

  23. Talajvizet tápláló beszivrgás talajvizet tápláló beszivárgás A telítetlen zóna feltöltődése a beszivárgáshoz + téli pot. párolgás Téli félévi csapadék Növekvő feltöltődési szakasz Kicsit nagyobb csapadék A beszivárgásra gyakorolt hatás

  24. A téli félévi csapadék nő, de a párolgás még inkább Felszín alatti vizek utánpótlódása csökken Beszivárgási területeken 10 mm/oC csökkenés (nagy területeken tűnhet el a kicsi, 10-20 mm/év-es beszivárgás) Valószínű hatások a felszín alatti vízkészletre

More Related