1.3k likes | 1.64k Views
History of Energy Oklahoma Corporation Commission Oil and Gas Conservation Division Technical Department Statistical Section Energy from the Past for our Future
E N D
History of Energy Oklahoma Corporation Commission Oil and Gas Conservation Division Technical Department Statistical Section
Energy from the Past for our Future An introduction to the fuels we use most to power our economy—and if we can develop the right technology, fuels that can power us into the future.
Introduction to energy What one thing do you have in common with every person, plant, and animal that has ever lived on Earth? The answer is: Energy You need energy to run, hit a ball, do school work, read, or even to sleep—yes, even to sleep. So does every living thing on this planet, from bugs to butterflies to baboons. They all need energy to live. Where do we get this energy? From the food we eat. Food has energy in it.
Introduction to energy (2) We also need energy to operate our lights, televisions, cars, and computers. All around us, energy is what makes things move, light up, give off warmth…in other words, energy is what makes things happen. It is the power we need to do work.
Introduction to energy (3) For millions of years, humans relied on their own muscles to do work. Then, we discovered that wind could propel sailing ships and a flowing river could turn a waterwheel and power our mills. Later, we discovered how to burn wood and coal so we could make heat and steam.
Introduction to energy (4) We found oil and learned how to use it to make fuels for engines. We found underground supplies of natural gas and learned how to burn it in street lamps, then in home furnaces and stoves. We discovered electricity—the energy of lightning bolts—and found ways to make it and use it safely.
Introduction to energy (5) Today, we use huge amounts of energy—to move, lift, warm or light things. Energy is one of the basic necessities of our universe. Most of our energy today comes from what we call “fossil fuels.” Fossil fuels come in two major forms—oil and natural gas.
How Fossil Fuels Formed Contrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact, most of the fossil fuels we find today were formed millions of years before the first dinosaurs. Fossil fuels, however, were once alive!
How Fossil Fuels Formed (2) They were formed from prehistoric plants and animals that lived hundreds of millions of years ago.
How Fossil Fuels Formed (3) Think about what the Earth must have looked like 300 million years or so ago. The land masses we live on today were just forming. There were swamps and bogs everywhere. The climate was warmer. Ancient trees and plants grew everywhere. Strange looking animals walked on the land, and just as weird looking fish swam in the rivers and seas. Tiny one-celled organisms called protoplankton floated in the ocean.
How Fossil Fuels Formed (4) When these ancient living things died, they decomposed and became buried under layers and layers of mud, rock, and sand. Eventually, hundreds and sometimes thousands of feet of earth covered them. In some areas, the decomposing materials were covered by ancient seas, then the seas dried up and receded.
How Fossil Fuels Formed (5) During the millions of years that passed, the dead plants and animals slowly decomposed into organic materials and formed fossil fuels. Different types of fossil fuels were formed depending on what combination of animal and plant debris was present, how long the material and pressure existed when they were decomposing.
How Fossil Fuels Formed (6) For example, oil and natural gas were created from organisms that lived in the water and were buried under ocean or river sediments. Long after the great prehistoric seas and rivers vanished, heat, pressure and bacteria combined to compress and “cook” the organic material under layers of silt.
How Fossil Fuels Formed (7) In most areas, a thick liquid called oil formed first, but in deeper, hot regions underground, the cooking process continued until natural gas was formed. Over time, some of this oil and natural gas began working its way upward through the earth’s crust until they ran into rock formations called “caprocks” that are dense enough to prevent them from seeping to the surface. It is from under these caprocks that most oil and natural gas is produced today.
OIL – Our Untapped Energy Wealth Oil keeps our country moving. Almost our entire transportation fleet—our cars, trucks, trains and airplanes—depend on fuels made from oil. Lubricants made from oil keep the machinery in our factories running. The fertilizer we use to grow our food is made from oil. We make plastics from oil. It is quite likely that the toothbrush you used this morning, the plastic bottle that holds your milk, and the plastic ink pen that you write or draw with are all made from oil.
OIL – Our Untapped Energy Wealth (2) In fact, we use more oil in the United States than any other form of energy. Oil supplies 40 percent of all the energy this country consumes. Image a lake 10 miles long, 9 miles wide and 60 feet deep. Fill that lake with oil. That would be about as much oil as the entire world uses in one year. The United States would use about ¼ of it.
OIL – Our Untapped Energy Wealth (3) The problem is that the United States cannot produce enough oil to satisfy our needs. In fact, only about half the oil consumed in the United States is actually produced in the United States. The rest is pumped from oil fields in other countries and sold to the United States. We spend billions of dollars a year to buy oil from other countries.
OIL – Our Untapped Energy Wealth (4) The second problem is that the oil fields in the United States are among some of the oldest fields still producing in the world. Some have been pumping for 50 years or more. Most of the easiest oil has already been pumped out.
OIL – Our Untapped Energy Wealth (5) You will read later in this section that there is still a lot of oil left in the ground. In fact, for every one barrel of oil we produce, we leave two barrels behind. In the history of oil fields in this country—a history stretching back almost 150 years—we have produced almost 175 billion barrels of oil. But there are more than 350 billion barrels of oil remaining in the ground that we know exist. Perhaps there are billions more in fields yet to be discovered. But this oil is hard to find and even harder to produce.
OIL – Our Untapped Energy Wealth (6) If we can find a way to locate and produce more of this oil, the United States won’t have to buy as much from other countries.
OIL – Our Untapped Energy WealthThe History of Oil Around 300 B.C., Alexander the Great supposedly used burning oil or “petroleum” to frighten the war elephants of his enemies. Marco Polo during his trips in the 13th Century recorded oil seeping from underground in the Caspian Sea region. Inscriptions found by archeologists indicate that oil and asphalt (a hard form of oil) were even used in 4000 B.C. in this area. Asphalt was also used by the ancient Egyptians to embalm mummies.
OIL – Our Untapped Energy WealthThe History of Oil (2) Ruins of early ships found by archeologists indicate that those vessels were caulked (cracks to keep water out) with a form of asphalt, sometimes called bitumen or pitch. In what is now the United States, petroleum was reported by Juan Rodriquez, a Spanish explorer, in 1542 near Santa Barbara, California. Oil residues from surface seepages near Nacogdoches, Texas, were used to repair the boats of the DeSoto expedition in 1593.
OIL – Our Untapped Energy WealthThe History of Oil (4) Today’s oil industry actually began almost 150 years ago—in 1859. In those days, an oily fuel for lamps and lubricants was made by melting the fat of whales. But whale oil had become expensive. A company called the Pennsylvania Rock Oil Company became interested in digging for natural oil. Oily rocks had been encountered in Pennsylvania by people drilling for salt. At first, this “rock oil” had been used as a medicine, but if enough of it could be found, perhaps it might be a cheaper substitute for whale oil.
OIL – Our Untapped Energy WealthThe History of Oil (5) Digging huge pits, however, was a time-consuming, expensive operation, so the Pennsylvania Rock Oil Company came up with the idea of drilling for oil. Not everyone was convinced, however. One banker who was asked to lend some of the money for the venture remarked, “Oil coming out of the ground, pumping oil out of the earth as you pump water? Nonsense!”
OIL – Our Untapped Energy WealthThe History of Oil (6) But the Pennsylvania Rock Oil Company was convinced that drilling for oil-rather than digging for it-was the way to go. They hired a part-time railroad conductor named Edwin L. Drake to go to Titusville, Pennsylvania and see if he couldn’t drill for oil. (Some books call him “Colonel” Drake, but he invented that title only to impress the local townspeople.)
OIL – Our Untapped Energy WealthThe History of Oil (7) Drake spent almost a year- from 1858 to 1859-getting the money and building the equipment (including a steam engine) he needed to drill. In the spring of 1859, he built the derrick and started to drill. It was slow going. The investors became nervous, and late that summer, they sent a letter to Drake directing that he cease operations, pay off his debts, and give up.
OIL – Our Untapped Energy WealthThe History of Oil (8) The letter was slow in arriving at Titusville. Before he got it, Drake had drilled about 69 feet. Then, the drill dropped into an underground crevice and abruptly slid down another 6 inches. Work stopped, but the next day one of the Drakes employees went out to check the drill rig. He peered down into the pipe that had been left in the hole. There, floating on top of water in the pipe, was oil. Drake had struck oil. A new industry was born.
OIL – Our Untapped Energy WealthThe History of Oil (9) Today, in the United States, the oil industry employs more than 300,000 workers. More than 8,000 companies produce oil in the United States. Oil flows from reservoirs underneath more than 30 States.
OIL – Our Untapped Energy WealthThe History of Oil (10) But in the almost 150 years since Edwin L. Drake drilled the very first U.S. oil well, a lot of oil fields have gone dry. Very little oil, for example, is still produced in Pennsylvania where the industry was born. In places like Texas, Oklahoma, Louisiana, and California, oil fields continue to produce millions of barrels of oil each day. But even these fields are slowing down.
OIL – Our Untapped Energy WealthThe History of Oil (11) That doesn’t mean we are running out of oil, however. It means that we are running out of “easy” oil. There is still more oil left in fields that have been pumping for 20, 30 or even 50 years.
Looking Down An Oil Well OIL – Ever wonder what oil looks like underground, down deep, hundreds or thousands of feet below the surface, buried under millions of tons of rock and dirt?
Looking Down An Oil Well (2) If you could look down an oil well and see oil where Nature created it, you might be surprised. You wouldn’t see a big underground lake, as a lot of people think. Oil doesn’t exist in deep, black pools. In fact, an underground oil formation—called an “oil reservoir”—looks very much like any other rock formation. It looks a lot like…well, rock.
Looking Down An Oil Well (3) Oil exists underground as tiny droplets trapped inside the open spaces, called “pores,” inside rocks. The “pores” and the oil droplets can be seen only through a microscope. The droplets cling to the rock, like drops of water cling to a window pane.
Looking Down An Oil Well (4) How do oil companies break these tiny droplets away from the rock thousands of feet underground? How does this oil move through the dense rock and into wells that take it to the surface? How do the tiny droplets combine into the billions of gallons of oil that the United States and the rest of the world use each day?
Looking Down An Oil WellSqueezing Oil Out Of Rocks Imagine trying to force oil through a rock. Can’t be done, you say? Actually, it can. In fact, oil droplets can squeeze through the tiny pores of underground rock on their own, pushed by the tremendous pressures that exist deep beneath the surface. How does this happen?
Looking Down An Oil WellSqueezing Oil Out Of Rocks (2) Imagine a balloon, blown up to is fullest. The air in the balloon is under pressure. It wants to get out. Stick a pin in the balloon and the air escapes with a bang!
Looking Down An Oil WellSqueezing Oil Out Of Rocks (3) Oil in a reservoir acts something like the air in a balloon. The pressure comes from millions of tons of rock lying on the oil and from the earth’s natural heat that builds up in an oil reservoir and expands any gases that may be in the rock. The result is that when an oil well strikes an underground oil reservoir, the natural pressure is released—like the air escaping from a balloon. The pressure forces the oil through the rock and up the well to the surface.
Looking Down An Oil WellSqueezing Oil Out Of Rocks (5) If there are fractures in the reservoir—fractures are tiny cracks in the rock—the oil squeezes into them. If the fractures run in the right direction toward the oil well, they can act as tiny underground “pipelines” through which oil flows to a well.
Looking Down An Oil WellSqueezing Oil Out Of Rocks (6) Oil producers need to know a lot about an oil reservoir before they start drilling a lot of expensive wells. They need to know about the size and number of pores in a reservoir rock. They need to know how fast oil droplets will move through these pores. They need to know where the natural fractures are in a reservoir so that they know where to drill their wells.
Looking Down An Oil WellSqueezing Oil Out Of Rocks (7) Today, scientists have invented many new ways to learn about the characteristics of an oil reservoir. They have developed ways to send sound waves through reservoir rock. Sound waves travel at different speeds through different types of rocks. By listening to soundwaves using devices called “geophones,” scientists can measure the speed at which the sound moves through the rock and determine where there might be rocks with oil in them.
Looking Down An Oil WellSqueezing Oil Out Of Rocks (8) Scientists also measure how electric current moves through rock. Rocks with a lot of water in the tiny pores will conduct electricity better than rocks with oil in the pores. Sending electric current through the rock can often reveal oil-bearing rocks.
Looking Down An Oil WellSqueezing Oil Out Of Rocks (10) Finally, oil companies will look at the rocks themselves. An exploratory well will be drilled, rock samples, called “cores,” will be brought to the surface. Scientists will look at the core samples under a microscope. Often they can see tiny oil droplets trapped inside the rock.