590 likes | 703 Views
MATHÉMATIQUES FINANCIÈRES I. Vingt-deuxième cours. Rappel:. Calcul du montant total versé (intérêt et dépôt) dans le cas d’un fonds d’accumulation. Rappel:. Calcul du montant total versé (intérêt et dépôt) dans le cas d’un fonds d’accumulation.
E N D
MATHÉMATIQUES FINANCIÈRES I Vingt-deuxième cours ACT2025 - Cours 22
Rappel: • Calcul du montant total versé (intérêt et dépôt) dans le cas d’un fonds d’accumulation. ACT2025 - Cours 22
Rappel: • Calcul du montant total versé (intérêt et dépôt) dans le cas d’un fonds d’accumulation. • Situation où le taux d’intérêt i du prêt et le taux d’intérêt du fonds d’accumulation j sont égaux. ACT2025 - Cours 22
Rappel: • Calcul du montant total versé (intérêt et dépôt) dans le cas d’un fonds d’accumulation. • Situation où le taux d’intérêt i du prêt et le taux d’intérêt du fonds d’accumulation j sont égaux. • Obligations. ACT2025 - Cours 22
Rappel: dénote la valeur actuelle d’une annuité consistant en des paiements de 1$ à la fin de chaque période pour n périodes telle que est le montant d’intérêt payé sur le prêt et est le montant versé dans un fonds à chaque période. ACT2025 - Cours 22
Nous obtenons alors l’équation suivante: Rappel: Conséquemment ACT2025 - Cours 22
Si le taux d’intérêt du prêt i est égale au taux d’intérêt du fonds d’amortissement j, alors la table d’amortissement du prêt est équivalente à celle du fonds d’amortissement lorsque les paiements sont égaux pour la table d’amortissement et les dépôts dans le fonds d’amortissement sont égaux. Rappel: ACT2025 - Cours 22
Le montant net d’intérêt payé à la fin de la ke période dans le cas du fonds d’amortissement est égal à la portion d’intérêt payé dans le ke paiement dans la table d’amortissement. Le montant net du prêt après le ke dépôt dans le cas du fonds d’amortissement est égal au solde restant après le ke paiement dans la table d’amortissement. Rappel: ACT2025 - Cours 22
Si i = j, nous avons aussi que Rappel: et le total versé (intérêt et dépôt) dans le cas du fonds d’amortissement est égal au paiement dans le cas de la table d’amortissement. ACT2025 - Cours 22
Rappel: Une obligation est un titre rapportant de l’intérêt et dans lequel l’emprunteur, appelé l’émetteur, s’engage à verser un montant déterminé à une date future aux prêteurs, appelés les souscripteurs. Les obligations d’épargne sont des obligations de capitalisation ou d’accumulation. L’emprunteur rembourse le principal et les intérêts à l’échéance ou parfois au moment où le souscripteur veut être remboursé. ACT2025 - Cours 22
Nous allons plutôt étudier les obligations négociables, plus précisément les obligations avec coupon.Les obligations avec coupon: L’émetteur s’engage à verser aux souscripteurs l’intérêt à intervalles réguliers (ce sont les coupons) et la valeur de remboursement de l’obligation à une date d’échéance déterminée. ACT2025 - Cours 22
Notation: • P désignera le prix de l’obligation. C’est ce que paie le souscripteur ACT2025 - Cours 22
Notation: • P désignera le prix de l’obligation. C’est ce que paie le souscripteur • F désignera la valeur nominale de l’obligation (« face amount » ou « par value » en anglais). Il s’agit de la valeur inscrite sur l’obligation et qui sert à déterminer le montant d’intérêt à verser régulièrement. ACT2025 - Cours 22
Notation: • P désignera le prix de l’obligation. C’est ce que paie le souscripteur • F désignera la valeur nominale de l’obligation (« face amount » ou « par value » en anglais). Il s’agit de la valeur inscrite sur l’obligation et qui sert à déterminer le montant d’intérêt à verser régulièrement. • C désignera la valeur de remboursement, i.e. le montant remboursé à l’échéance. En général, C = F et nous disons que l’obligation est remboursée au pair. Il peut arriver que C ≠ F. ACT2025 - Cours 22
Notation: • P désignera le prix de l’obligation. C’est ce que paie le souscripteur • F désignera la valeur nominale de l’obligation (« face amount » ou « par value » en anglais). Il s’agit de la valeur inscrite sur l’obligation et qui sert à déterminer le montant d’intérêt à verser régulièrement. • C désignera la valeur de remboursement, i.e. le montant remboursé à l’échéance. En général, C = F et nous disons que l’obligation est remboursée au pair. Il peut arriver que C ≠ F. Si P = F, on dit que l’obligation est achetée au pair. ACT2025 - Cours 22
Notation: • r est le taux d’intérêt par période de capitalisation de l’intérêt (ou encore par période de paiement des coupons). C’est le taux facial. Il est indiqué sur l’obligation et sert à déterminer le montant d’intérêt que l’émetteur doit verser régulièrement aux souscripteurs. ACT2025 - Cours 22
Notation: • r est le taux d’intérêt par période de capitalisation de l’intérêt (ou encore par période de paiement des coupons). C’est le taux facial. Il est indiqué sur l’obligation et sert à déterminer le montant d’intérêt que l’émetteur doit verser régulièrement aux souscripteurs. • Fr est le montant d’intérêt versé périodiquement. Ce montant est appelé le coupon. ACT2025 - Cours 22
Notation: • g est le taux modifié d’intérêt par période de capitalisation de l’intérêt (ou encore par période de paiement des coupons). g est défini par l’équation Cg = Fr. Si l’obligation est remboursée au pair, alors g = r. ACT2025 - Cours 22
Notation: • g est le taux modifié d’intérêt par période de capitalisation de l’intérêt (ou encore par période de paiement des coupons). g est défini par l’équation Cg = Fr. Si l’obligation est remboursée au pair, alors g = r. • i désignera le taux de rendement de l’obligation par période de paiement des coupons en supposant que l’obligation est détenue jusqu’à sa date de maturité ou de rédemption et que les versements de l’intérêt (i.e. les coupons) sont réinvestis aussi au taux i. En général, ce taux est exprimé comme un taux nominal pour lequel la période de capitalisation est celle des coupons. ACT2025 - Cours 22
Notation: • n est le durée de vie de l’obligation, i.e. le nombre de périodes de capitalisation du taux de rendement jusqu’à la date de maturité ou de rédemption de l’obligation. Nous supposerons premièrement que n est bien déterminé. Nous discuterons plus tard le cas des obligations rachetables (« callable bonds ») . Dans ce dernier cas, il y a des dates possibles de rachat par l’émetteur de l’obligation. Ceci aura aussi des incidences sur le taux de rendement. ACT2025 - Cours 22
Notation: • n est le durée de vie de l’obligation, i.e. le nombre de périodes de capitalisation du taux de rendement jusqu’à la date de maturité ou de rédemption de l’obligation. Nous supposerons premièrement que n est bien déterminé. Nous discuterons plus tard le cas des obligations rachetables (« callable bonds ») . Dans ce dernier cas, il y a des dates possibles de rachat par l’émetteur de l’obligation. Ceci aura aussi des incidences sur le taux de rendement. • K désignera la valeur actuelle de la valeur de remboursementC de l’obligation à la date de maturité ou de rédemption calculée au taux de rendement i, c’est-à-dire K = Cn où = (1 + i)-1. ACT2025 - Cours 22
Notation: • G est le montant de base de l’obligation, i.e. le montant qui investit au taux de rendement i engendre les mêmes coupons. Donc G est défini par Gi = Fr. ACT2025 - Cours 22
La formule basique reliant le prix P d’une obligation et son taux de rendement i immédiatement après le paiement d’un coupon est ou encore ACT2025 - Cours 22
En effet, nous avons le flux financier suivant: et nous supposons que les coupons sont réinvestis au taux de rendement i ACT2025 - Cours 22
Nous discuterons plus tard de la relation entre le prix d’une obligation et son taux de rendement lorsque nous sommes entre des paiements de coupon. Nous allons poursuivre notre analyse des formules immédiatement après des coupons. ACT2025 - Cours 22
Nous avons d’autres formules déduites de la formule basique. Si nous utilisons l’équation Nous obtenons alors le formule Prime/Escompte: ACT2025 - Cours 22
Si P > C, nous disons que l’obligation est vendue à prime.Si P < C, alors nous disons que l’obligation est vendue à escompte.La différence (P - C) doit être amortie d’un point de vue comptable et nous discuterons de ceci plus tard. ACT2025 - Cours 22
Si nous utilisons l’équation Alors nous obtenons la formule du montant de base: ACT2025 - Cours 22
Finalement nous obtenons la dernière formule, celle de Makeham: Cette dernière formule nous servira pour des obligations en série. ACT2025 - Cours 22
Si nous résumons, nous avons quatre formules pour le prix d’une obligation en fonction de son taux de rendement: ACT2025 - Cours 22
Exemple 1 : Déterminons le prix d’une obligation dont la valeur nominale est 75 000$ d’une durée de vie de 15 ans ayant des coupons semestriels au taux facial: le taux nominal de 8% par année capitalisée semestriellement et qui sera remboursé à 78 000$ si cette obligation est achetée pour que le taux de rendement soit le taux nominal de 10% par année capitalisé semestriellement. ACT2025 - Cours 22
Exemple 1 : (suite) Avec nos notations précédentes, nous avons F = 75000$ C = 78000$ r = 8%/2 = 4% par semestre n = 15 x 2 = 30 semestres i = 10%/2 = 5% par semestre ACT2025 - Cours 22
Exemple 1 : (suite) Le coupon semestriel de cette obligation est 75000 (0.04) = 3000$ Le flux financier de cette obligation est ACT2025 - Cours 22
Exemple 1 : (suite) Dans ce cas, cette obligation est achetée à escompte. Avec la formule basique nous obtenons ACT2025 - Cours 22
Exemple 1 : (suite) Nous allons aussi illustrer les autres formules. Si nous considérons la formule prime/escompte, alors Ci = 78000(0.05) = 3900$ et nous obtenons ACT2025 - Cours 22
Exemple 1 : (suite) Si nous considérons maintenant la formule du montant de base, alors le montant de base G est défini par Gi = Fr (« = coupon ») et, pour cette obligation, nous obtenons G (0.05) = 3000 et G = 60000$. Donc le prix est ACT2025 - Cours 22
Exemple 1 : (suite) Finalement si nous considérons maintenant la formule de Makeham, alors le taux modifié d’intérêt g est défini par Cg = Fr (« = coupon ») et, pour cette obligation, nous obtenons 78000 g = 3000 et g = 3.846153846%. La valeur actuelle de la valeur de remboursement au taux de rendement est K = 78000(1.05)-30 = 18047.44$. Donc le prix est ACT2025 - Cours 22
Exemple 2 : Au terme de la journée du 28 mars 2008, il y avait les cotations suivantes pour les T-Notes du Département du Trésor américain sur le site Yahoo Finance. ACT2025 - Cours 22
Les données ont été obtenues du site internet: http://screen.yahoo.com/bonds.html ACT2025 - Cours 22
Exemple 2 : (suite) Nous allons vérifier les prix et taux de rendement pour ces trois obligations en supposant qu’au 28 mars 2008 nous sommes immédiatement après un paiement de coupon. Ceci n’est pas tout à fait juste. Pour chacune de ces obligations, nous avons indiqué la date de maturité de l’obligation. ACT2025 - Cours 22
Exemple 2 : (suite) Pour les obligations du Département du Trésor américain, les coupons sont semestriels et les taux (facial et rendement) sont nominaux. La valeur faciale des cotations est 100$ et la valeur de remboursement de ces obligations est aussi la valeur faciale 100$. Ces obligations sont remboursées au pair. ACT2025 - Cours 22
Exemple 2 : (suite) Pour l’obligation 4.750 Mar11 et avec notre hypothèse, la durée de vie est 6 semestres et il y aura 6 coupons. Le taux facial est 4.750%/2 = 2.375% et le coupon est 100(0.02375) = 2.375. Le taux de rendement (à maturité) sur le prix est 4.777%/2 = 2.3885%. Donc le prix est ACT2025 - Cours 22
Exemple 2 : (suite) La différence est attribuable à ce que nous ne sommes pas vraiment immédiatement après le coupon. Aussi les cotes indiquées sont en général (par exemple sur le Wall Street Journal) sous la forme: prix demandé, prix offert et le taux de rendement est déterminé par rapport à un de ces prix. Ici comme il n’y a qu’un prix et qu’il n’y a pas d’indication sur le site sur ce qu’il faut comprendre pour ce prix, est-ce le prix demandé ou le prix offert, ceci pourrait être une des raisons de le différence de prix. ACT2025 - Cours 22
Exemple 2 : (suite) Pour l’obligation 4.625 Sep08 et avec notre hypothèse, la durée de vie est 1 semestre et il y aura 1 coupon. Le taux facial est 4.625%/2 = 2.3125% et le coupon est 100(0.023125) = 2.3125. Le taux de rendement (à maturité) sur le prix est 4.523%/2 = 2.2615%. Donc le prix est ACT2025 - Cours 22
Exemple 2 : (suite) Pour l’obligation 4.50 Sep11 et avec notre hypothèse, la durée de vie est 7 semestres et il y aura 19 coupons. Le taux facial est 4.50%/2 = 2.25% et le coupon est 100(0.0225) = 2.25. Le taux de rendement (à maturité) sur le prix est 4.820%/2 = 2.410%. Donc le prix est ACT2025 - Cours 22
Si nous considérons maintenant ces trois obligations, alors leurs prix (selon nos calculs) et taux de rendement sont ACT2025 - Cours 22
Comme nous l’avons indiqué, il peut arriver que le prix P de l’obligation soit plus grand (achat à prime) ou encore plus petit (achat à escompte) que la valeur de remboursement C. Pour des raisons comptables, il est nécessaire d’amortir cette écart sur la durée de vie de l’obligation. ACT2025 - Cours 22
Si P < C , alors il y a un gain pour l’acheteur au moment du remboursement de l’obligation.Si P > C, alors il y a une perte pour l’acheteur au moment du remboursement de l’obligation.Nous amortissons ce gain ou perte sur la durée de vie de l’obligation au moment de chacun des paiements de coupon. Deux méthodes peuvent être utilisées: une méthode actuarielle et une méthode linéaire. ACT2025 - Cours 22
Pour la méthode actuarielle, il faut parler de valeur comptable ou valeur aux livres d’une obligation (« book value » en anglais) ACT2025 - Cours 22
Notations: • la valeur comptable de l’obligation après le versement du ke coupon sera notée par Bk • la portion d’intérêt du ke coupon sera notée par Ik • l’ajustement à être apporté à la valeur comptable de l’obligation dans le ke coupon sera notée Pk ACT2025 - Cours 22