150 likes | 263 Views
The Study of Nuclear Structures with the Brueckner-AMD. Tomoaki Togashi and Kiyoshi Kato. Department of Physics, Hokkaido University. P. n. n. n. n. INPC2007, Tokyo June 6, 2007. P. P. n. Purposes.
E N D
The Study of Nuclear Structures with the Brueckner-AMD Tomoaki Togashi and Kiyoshi Kato Department of Physics, Hokkaido University P n n n n INPC2007, Tokyo June 6, 2007 P P n
Purposes - We develop a new ab initio calculation framework based on the antisymmetrized molecular dynamics (AMD) and the Brueckner theory. Brueckner-AMD; the Brueckner theory + Antisymmetrized molecular dynamics (AMD) T.Togashi and K.Kato; Prog. Theor. Phys. 117 (2007) 189
H.Bando, Y.Yamamoto , S.Nagata , PTP 44 (1970) 646 Framework of the Brueckner-AMD ( Gaussian wave packet ) n P n n n n P n P P n P P n The state at the energy minimum A.Dote, H.Horiuchi, PTP 103 (2000) 91 A.Dote, Y.Kanada-En’yo, H.Horiuchi, PRC56 (1997) 1844 1. AMD wave function ( Slater determinant ) 2. Single particle orbits are constructed with the AMD-HF 4. The frictional cooling method ( B-matrix ) ( diagonalization ) single particle orbit* 3. G-matrix is calculated with the single particle orbits ( Bethe-Goldstone equation ) self-consistent *The single particle orbits should be Hartree-Fock hamiltonian eigen states, however, in the case that those state are adopted as the single particle orbits, the results have scarcely been changed until now.
Intrinsic Density (4He) Brueckner-AMD Results ρ(r) Y Av8’; P.R.Wringa and S.C.Pieper, PRL89 (2002), 182501. *In the case of 8Be and 12C, the Gaussian width parameter is the same value as the case of 4He. X Intrinsic Density (8Be) Intrinsic Density (12C) ρ(r) ρ(r) Y Y X X
Parity- & Jπ- projection in the Brueckner-AMD Ex) Parity Projection Parity-projected state : parity Space inversion operator ⇒the liner combination of two Slater determinants The G-matrix between the different Slater determinants is necessary. ⇒ Bethe-Goldstone Equation Correlation function Model (AMD) wave function Y. Akaishi, H. Bando, and S. Nagata,PTP. Suppl. No.52 (1972), 339. The G-matrix is constructed with the correlation functions.
Results of 4He with variation after projection (VAP) Argonne v8’ (no Coulomb force) A. Variation (cooling) with no projection 4He (Parity +) Y ρ(r) Binding Energy (4He): -22.5(MeV) B. Variation after projection (VAP): parity+ Binding Energy (4He: +): -23.6(MeV) + Projection after variation (PAV): J=0 X Binding Energy (4He: 0+): -24.7(MeV) The result is comparable with that of the benchmark calculations benchmark calculations† : -25.9(MeV) †Ref: H. Kamada et al. , PRC64 (2001) 044001
Results of Be isotopes with VAP (Parity) Argonne v8’ 8Be (Parity +) 9Be (Parity -) Y ρ(r) Y ρ(r) (no Coulomb force) X X 10Be (Parity +) Binding energy: -37.2(MeV) Binding energy: -36.5(MeV) ρ(r) Y X Binding energy: -39.6(MeV) *The Gaussian width parameter is the optimized value of 8Be in the case with no projection.
Intrinsic density of 9Be (Parity -) ( proton ) Y ρ(r) ( matter ) Y ρ(r) X ( neutron ) ρ(r) Y X π-orbit Argonne v8’ (no Coulomb force) Binding energy: -36.5(MeV) *The Gaussian width parameter is the optimized value of 8Be in the case with no projection. X
Intrinsic density of 9Be (Parity +) ( proton ) ρ(r) Y ( matter ) Y ρ(r) X ( neutron ) Y ρ(r) X σ-orbit Argonne v8’ (no Coulomb force) Binding energy: -34.0(MeV) *The Gaussian width parameter is the optimized value of 8Be in the case with no projection. X
Intrinsic density of 10Be (Parity +) ( proton ) ρ(r) Y ( matter ) ρ(r) Y X ( neutron ) ρ(r) Y X Argonne v8’ (no Coulomb force) Binding energy: -39.6(MeV) *The Gaussian width parameter is the optimized value of 8Be in the case with no projection. X
Intrinsic density of 10C (Parity +) ( proton ) ρ(r) Y ( matter ) ρ(r) Y X ( neutron ) ρ(r) Y X Argonne v8’ (no Coulomb force) Binding energy: -39.6(MeV) *The Gaussian width parameter is the optimized value of 8Be in the case with no projection. X
Summary & Future works Summary ・ We constructed the framework of AMD with realistic interactions based on the Brueckner theory. ・ Furthermore, we proposed the projection method in the Brueckner-AMD with the correlation functions based on the Bethe-Goldstone equation. ・ With the Brueckner-AMD and the variation(cooling) after projection, we obtained the reasonable results for light nuclei starting with the realistic interaction. Future works ・ Systematic calculations inlight nuclei : Calculated : Calculating ・ Calculations with other realistic interactions: Argonne v18, CD-Bonn, ・・・ ・ Three-body force http://wwwndc.tokai-sc.jaea.go.jp/CN04/CN001.html
IKEDA Diagram Nuclear Cluster Structures Threshold rules Molecular structures will appear close to the respective cluster threshold. Unstable nuclei Ground states of drip-line nuclei are observed near the thresholds. Threshold Physics It is desired to understand exotic properties of drip-line nuclei and various kinds of cluster structures in light nuclei from more basic points of view, namely with a realistic nuclear force and a wide model space.
Intrinsic density of 9B (Parity -) ( preliminary) ( proton ) ρ(r) Y ( matter ) ρ(r) Y X ( neutron ) ρ(r) Y X Argonne v8’ (no Coulomb force) Binding energy: -36.5(MeV) *The Gaussian width parameter is the optimized value of 8Be in the case with no projection. X
Intrinsic density of 7Li (Parity -) ( proton ) ρ(r) Y ( matter ) ρ(r) Y X ( neutron ) ρ(r) Y X Argonne v8’ (no Coulomb force) Binding energy: -25.1(MeV) *The Gaussian width parameter is the optimized value of 8Be in the case with no projection. X