1 / 12

TEORI PERMINTAAN

TEORI PERMINTAAN. PENDAHULUAN PENDEKATAN UTILITAS KARDINAL - Utilitas - Marginal Utilitas - Kondisi Keseimbangan Konsumen konsumsi satu jenis barang menurunkan fungsi permintaan Konsumsi lebih dari satu barang PENDEKATAN UTILITAS ORDINAL - Kurva Indeveren

Download Presentation

TEORI PERMINTAAN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TEORI PERMINTAAN • PENDAHULUAN • PENDEKATAN UTILITAS KARDINAL - Utilitas - Marginal Utilitas - Kondisi Keseimbangan Konsumen konsumsi satu jenis barang menurunkan fungsi permintaan Konsumsi lebih dari satu barang • PENDEKATAN UTILITAS ORDINAL - Kurva Indeveren - Marginal Rates Substitutions (MRS) - Budget Line - Keseimbangan Konsumen - Derivasi Teori Permintaan - Substitution effect dan Income Effect • FUNGSI PERMINTAAN, FUNGSI REVENUE dan ELASTISITAS PERMINTAAN

  2. PENDAHULUAN • Teori Permintaan pada dasarnya membahas Teori Perilaku Konsumen dalam mengkonsumsi barang. • D x= f (Px, I, Py))  Hukum Permintaan . • Salah satu aspek dari Hukum atau Teori Permintaan adalah “hubungan antara Dx dan Px bersifat negatif. P↓  X ↑ P↑  X ↓ • Hubungan semacam ini akan kita buktikan dengan beberapa pendekatan. P X

  3. PENDEKATAN UTILITAS KARDINAL • Utilitas (TU) • Utilitas (utility = Dayaguna atau kepuasan yang diperoleh • konsumen dari penggunaan barang / jasa • (misalnya X). • Asumsi : utilitas dapat diukur secara kardinal • atau bahkan dapat dinilai dengan uang • X ↑  TU ↑, dengan ∆TU ↓ sehingga TU mencapai max • Kalau konsumen terus menambah konsumsi X,  TU ↓ • Marginal Utilitas (MU) • ∆X  ∆TU • Pertanyaan : Berapakah ∆TU jika ∆X hanya satu unit saja ? • ∆TU dikarenakan ∆X satu unit inilah yang disebut sebagai • “Marginal Utilitas” So Marginal utility is the change of utility which coused by the change one unit consumtion of good

  4. Gambaran pengukuran TU dan MU : X = 2  TU = 10 X = 5  TU = 25 ΔX = 3 unit ΔTU = 15 util ΔX = 3 unit ΔTU = 15 ΔX = 1 unit ΔTU = 15 / 3 = 5  14 10 6 2 - 2 Dapat diprediksi dengan Ekonometrika TU = f(X) TU = 16X – X2

  5. SCATER DIAGRAM QUADRATIC FUNCTION Dependent variable.. TU Method.. QUADRATI -------------------- Variables in the Equation -------------------- Variable B SE B Beta T Sig T X 16,000000 1,2626E-07 2,397604 126726810 ,0000 X**2 -1,000000 1,2119E-08 -1,561130 -82514465 ,0000 (Constant) 7,1054273576E-15 2,6845E-07 ,000 1,0000 TU = 0 + 16 X - X2

  6. TU= 16X – X2 MU=16 – 2X 14 10 6 2 - 2 MU = f(X) MU = dTU/dX = 16 – 2X TU = f(X) TU = 16X – X2 • Yang dimaksud permintaan adalah sejum- • lah brg yg akan dibeli kosumen sehingga • kepuasannya maksimum  Maximize • kepuasan (TU) sbg tujuan. • Agar tujuan tsb tercapai harus memenuhi • syarat / kondisi keseimbangan : • MU = 0  16 – 2X = 0 • X = 8 • (X = permintaan barang X) by L2A164 6

  7. Contoh Kepuasan seorang konsumen atas suatu produk yang dikonsumsi adalah TU = 100 + 150Q2 – 2Q3 a) Tentukan ekspresi dari marginal utility b) Gambarkan fungsi TU dan MU c) Berapakah besarnya TU dan MU jika Q = 5 unit ? d) Berapa Q harus dikonsumsi sehingga TU max e) Berapa konsumsi Q pada MU mulai menurun. Jawaban a) MU = 300 Q - 6Q2 b) Lihat slide berikut c) TU = 3600 dan MU =1350 d) MU = 0 → 300 Q - 6Q2 = 0 → Q = 50 e) MU ′ = 0 → 300 -12 Q = 0 → Q = 25

  8. TU = 100 + 150 Q2 – 2Q3 MU = 300 Q - 6Q2

  9. Menurunkan Fungsi / Kurva Permintaan (Dx = f(Px) • Realitanya Px akan dihadapi konsumen → Pengorbanan : • Z = Px . X  ( Z = f(X) ) • Jadi tujuan konsumen tidak semata-mata memaksisimumkan • TU saja, tetapi harus memperhitungkan biayanya, berarti konsu- • men harus memaksimumkan selisih (S) antara TU dan Z , yaitu • S = TU – Z : Maximize : S = TU - Z = f (X) - Px .X Agar S maksimum , maka : Kondisi keseimbangan

  10. optimum maksimum Dari contoh di atas, maka hukum permintaan terbukti : Mux = Px  16 – 2X = Px X = 8 – 0,5 Px  Px ↓ X↑ Px ↑ X↓ Jika Px = 6, maka : X = 8 – 0,5Px X = 8 - 0,5(6) = 5 unit TU = 16(5) – 52= 55 Z = 6(X) = 30 S = TU – Z = 25 Selain X = 5 , pasti S < 25

  11. Kondisi Keseimbangan Konsumen Dengan Konsumsi Lebih Dari Satu Barang • Untuk kondisi yang lebih nyata lagi, perilaku konsumen menghadapi • berbagai pilihan barang dan terbatasnya dana yang dimiliki, disam- • ping menghadapi harganya TU = f (X1, X2, . . . . Xn) C = Px1X1 + Px2X2 . . . .+ PxnXn L = f (X1, X2, . . . . Xn) +λ(C –Px1X1– Px2X2 . . . . – PxnXn ) (Kondisi keseimbangan konsumen)

  12. Contoh : Seorang konsumen diperkirakan mempunyai fungsi utilitas atas barang X dan Y seperti TU = 10X + 24 Y – 0,5X2 – 0,5Y2. Harga X (Px) = $2 dan harga Y (Py) = $6. Sedangkan dana yang dimilki sebesr $44. Pertanyaan : Berapa banyak barang X dan Y harus dibeli konsumen agar kepuasannya maksimum ? Penyelesaian : Maksimumkan : TU = 10X + 24 Y – 0,5X2 – 0,5Y2 Kendala : 44 = 2X + 6Y 44 = 2X + 6Y 44 = 2X + 6(3X - 6) 44 = 20X – 36 X = 4 Y = 3(4) – 6 = 6 TU = 10(4) + 24(6) – 0,5(42) – 0,5(62) = 158 λ = (10 – 4)/2 = (24 – 6)/6 = 3 Jadi pembelian barang X = 4 unit dan Y = 6 unit, Total Kepuasan = 158 utils. λ = 3 mengartikan pengaruh perubahan per $ terhadap fungsi TU sebesar + 3 kali. Jadi kalau dana ditambah $10, maka TU akan bertambah sebesar mendekati 30 utils (3x10), tepatnya sebesar 28,75 utils. Coba buktikan !

More Related