1 / 70

Wykłady z fizyki – kurs podstawowy Mechanika cz. I

Wykłady z fizyki – kurs podstawowy Mechanika cz. I. home.agh.edu.pl/~wmwoch Wiesław Marek Woch. Literatura. J. Orear , Fizyka, WNT 1990, t.1 I 2 R. Resnic , D . Ha l l i day, Fizyka, PWN, t. I i II, D. Halliday, R. Resnick, J. Walker, Podstawy fizyki , PWN, t. I-V

acton
Download Presentation

Wykłady z fizyki – kurs podstawowy Mechanika cz. I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wykłady z fizyki – kurs podstawowy Mechanika cz. I home.agh.edu.pl/~wmwoch Wiesław Marek Woch

  2. Literatura J. Orear, Fizyka, WNT 1990, t.1 I 2 R. Resnic, D. Halliday, Fizyka,PWN, t. I i II, D. Halliday, R. Resnick, J. Walker, Podstawy fizyki, PWN, t. I-V C. Kittel, W.D. Knight, M.A. Ruderman, Mechanika, PWN E.M. Purcell, Elektryczność i magnetyzm, PWN F.C. Crawford, Fale, PWN E.H. Wichmann, Fizyka kwantowa, PWN F. Reif, Fizyka statystyczna, PWN R.P. Feynman, R.B.Leighton, M. Sands, Feynmana wykłady z fizyki, PWN, t. I, cz. I i II, t. II, cz.I i II, t. III A.K. Wróblewski, J.A. Zakrzewski, Wstęp do fizyki, PWN, t. I i II J. R. Taylor, Wstęp do analizy błędu pomiarowego, PWN Matematyka F. Leja, Rachunek różniczkowy i całkowy, PWN K. Kuratowski, Rachunek różniczkowy i całkowy, PWN G. M. Fichtenholtz, Rachunek różniczkowy i całkowy, PWN A. Mostowski, M. Stark, Elementy algebry wyższej, PWN E. Karaśkiewicz, Zarys teorii wektorów i tensorow, PWN

  3. Pojęcia podstawowe φύσιςphysis – natura, przyroda Matematyka jest językiem fizyki Wektory Pochodne Całki

  4. Matematyka jest językiem fizyki Isaac Newton (1642 -1727) – angielski fizyk, matematyk, astronom, filozof, historyk, badacz Biblii i alchemik. W swoim słynnym dziele Philosophiae naturalis principia mathematica (1687 r.) przedstawił prawo powszechnego ciążenia, a także prawa ruchu leżące u podstaw mechaniki klasycznej. Niezależnie od Gottfrieda Leibniza przyczynił się do rozwoju rachunku różniczkowego i całkowego. Jako pierwszy wykazał, że te same prawa rządzą ruchem ciał na Ziemi, jak i ruchem ciał niebieskich. Jego dociekania doprowadziły do rewolucji naukowej i powszechnego przyjęcia teorii heliocentryzmu. Podał matematyczne uzasadnienie dla praw Keplera i rozszerzył je udowadniając, że orbity (w większości - komet) są nie tylko eliptyczne, ale mogą być też hiperboliczne i paraboliczne. Głosił, że światło ma naturę korpuskularną, czyli że składa się z cząstek, którym towarzyszą fale decydujące o ruchu rozchodzenia się światła. Rozwinął prawo stygnięcia. Sformułował twierdzenie o dwumianie i zasady zachowania pędu oraz momentu pędu.

  5. Matematyka jest językiem fizyki Gottfried Wilhelm Leibniz, znany także pod nazwiskiem Leibnitz (1646 - 1716) – niemiecki filozof, matematyk, prawnik, inżynier–mechanik, fizyk, historyk i dyplomata. Wstępując na Uniwersytet w Lipsku miał 15 lat. Po skończeniu studiów filozoficznych na Uniwersytecie w Lipsku i napisaniu rozprawy naukowej pt. De principio individuali (1663), wyjechał bez zgody ojca do Heidelbergu, a potem do Jeny, aby studiować nowożytną fizykę, matematykę i prawo. W filozofii starał się rozwinąć myśli Kartezjusza, wprowadzając pojęcie monad rozwiązać dylemat dualizmu systemu kartezjańskiego. W matematyce, niezależnie od Newtona, stworzył rachunek różniczkowy, przy czym jego notacja tego rachunku okazała się praktyczniejsza. Podał pojęcie całki jako sumy nieskończonej liczby różniczek i wprowadził jej symbol. Jako inżynier–mechanik Leibniz zajmował się konstrukcją zegarów, maszyn wydobywczych i zbudował jedną z pierwszych mechanicznych maszyn liczących. W fizyce stworzył pojęcie momentu pędu i momentu siły. Karta rękopisu Monadologii

  6. Experientia est mater studiorum Wiedza dzięki pomiarom!(Heike KAMERLINGH- ONNES) • Powiedz mi, a zapomnę • Pokaż mi, a zapamiętam • Pozwól mi zrobić, a zrozumiem Konfucjusz (Kǒng Fūzǐ; dosł. „Mistrz Kong”) urodził się w 551 r.p.n.e. w rejonach dzisiejszej prowincji Shangdong, a zmarł w wieku 72 lat w 479 r.p.n.e.

  7. Układy jednostek miar Układ jednostek miar – uporządkowany i spójny zbiór jednostek miar, za pomocą których można mierzyć wielkości fizyczne • Układy miar oparte na wielkościach: długość-masa-czas (LMT), (uzupełnionym ewentualnie o temperaturę, natężenie prądu elektrycznego i inne wielkości podstawowe): • -CGS • -MKS • -MKSA • -MTS • -SI • -Anglosaski układ jednostek miar • Układy miar oparte na wielkościach: długość-siła-czas (LFT): • MKGS (ciężarowy) • Historyczne układy miar: • Staropolski układ jednostek miar • Nowopolski układ jednostek miar • Miary greckie

  8. Układy jednostek miar Układ jednostek miar składa się z jednostek miar podstawowych (elementarnych) przyjętych umownie oraz zbudowanych na ich podstawie jednostek pochodnych Jednostką miary spójnąnazywa sięjednostkęmiary wyrażoną za pomocą jednostek podstawowych wzorem, w którym współczynnik liczbowy jest równy jedności. Układem spójności jednostek miarnazywa sięukład jednostek miar ze zbioru jednostek podstawowych i z pochodnych jednostek spójnych Układ jednostek miar składa s

  9. Układy jednostek miar Układ jednostek miar CGS (Centymetr Gram Sekunda) nazywany bezwzględnym układem jednostek. Zastąpiony przez układ SI ?????. Jednostki podstawowe: centymetr (cm), gram (g), sekunda (s) „Każda dziedzina wiedzy i techniki posługuje się własnymi jednostkami wielkości. Milion elektronowoltów (MeV) jest jednostką w fizyce jądrowej, kilokaloria – jednostką energii w chemii, a kilowatogodzina – jednostką energii używaną w technice. (...) W publikacjach fizycznych stosuje się przeważnie trzy układy jednostek: układ Gaussa CGS, MKS i praktyczny. Każdy naukowiec i inżynier, jeżeli chce korzystać z literatury fizycznej, musi znać wszystkie te trzy układy jednostek” Charles Kittel, Walter D Knight, Malvin A Rudeman, Mechanika, (Berkeley Physics Coures – Volume I)

  10. Układy jednostek miar Układ jednostek miar CGS przykłady jednostek pochodnych: dyna=g*cm/s2 bar=106 dyna/cm2 Układ jednostek miar MKS Jednostki podstawowe: metr (m), kilogram (kg), sekunda (s) Układ jednostek miar MKSA Jednostki podstawowe: metr (m), kilogram (kg), sekunda (s), amper (A).

  11. Układy jednostek miar Układ jednostek miar MTS Jednostki podstawowe: metr (m), tona (t), sekunda (s) Układ jednostek miar ciężarowy Jednostki podstawowe: metr (m), kilogram-siła (kG), sekunda (s). Jednostką masy jest w tym układzie inert. 1 inert = 1 kg*s2/m = 9,80665 kg Energia 1 kilogramometr = 9,80665 J. Moc 1 kilogramometr/s = 9,80665 W i jego wielokrotność koń mechaniczny. Ciśnienia 1 kG/m2 = 9,80665 Pa i jego wielokrotność atmosfera techniczna = 98 066,5 Pa.

  12. 1 cal = 1/12 stopy 1 mila angielska = 1,609 km 1 stopa (ang. foot) cal = 1/12 stopy 1 cal = 2,54 cm 1 cal = 2,54 cm mila angielska mila angielska 1 cal = 1/12 stopy 1 cal = 2,54 cm 1 mila angielska 1 mila angielska = 1,609 km 1 jard = 3 stopy (ang. yard) 1 y = 0,9144 metra 1 stopa (ang. foot) 1 foot = 30,48 cm = 12 cali Układy jednostek miar Anglosaski układ jednostek miar Staropolski układ jednostek miar 1 ćwierć = 2 dłonie = 1/4 łokcia (stąd nazwa) = 0,1489 m 1 sztych = 8 cali = 0,1985 m 1 stopa = 1,5 sztycha = 12 cali = 0,2978 m 1 łokieć (miara podstawowa) = 2 stopy = 0,5955 m 1 sążeń = 3 łokcie = 1,787 m 1 morga (miara podstawowa) = 5985 m² 1 łan frankoński = 43,2 morgi = 258 554 m² 1 kwarta = 0,9422 l 1 garniec (miara podstawowa) = 4 kwarty = 3,7689 l 1 łut = 0,0127 kg 1 funt (miara podstawowa) = 2 grzywny = 0,4052 kg 1 mila angielska = 1,609 km 1 jard = 3 stopy (ang yard) 1 jard = 3 stopy (ang yard) 1 y = 0,9144 metra 1 y = 0,9144 metra 1 stopa (ang. foot) 1 foot = 30,48 cm = 12 cali 1 foot = 30,48 cm = 12 cali

  13. Układy jednostek miar Układ SI

  14. Przedrostki powiększające i pomniejszające

  15. Układy jednostek miar Jednostka czasu Sekunda (łac. secunda - następna, najbliższa) - jednostka podstawowa większości układów jednostek miar np. SI, MKS, CGS - oznaczana s. Termin sekunda pochodzi od łacińskiego wyrażenia pars minuta secunda (druga mała część). Jest to czas równy 9 192 631 770 okresów promieniowania odpowiadającego przejściu między dwoma poziomami F = 3 i F = 4 struktury nadsubtelnej stanu podstawowego 2S1/2 atomu cezu 133Cs (powyższa definicja odnosi się do atomu cezu w spoczynku, w temperaturze 0 K). Definicja ta, obowiązująca od 1967 r., została ustalona przez Międzynarodowy Układ Jednostek Miar. Poprzednio sekundę definiowano jako 1/31 556 925,9747 część roku zwrotnikowego 1900 lub 1/86400 część doby.

  16. Układy jednostek miar Zegar atomowy - wzorzec częstotliwości Dokładność takich zegarów dochodzi do 10-15, co oznacza 10-10 sekundy (1/10 nanosekundy) na dzień. Zegary te utrzymują ciągły i stabilny czas TAI (z fr. Temps Atomique International). Wzorzec - światowy czas uniwersalny UTC. Pierwszy zegar atomowy został zbudowany w 1949 roku w amerykańskim National Bureau of Standards. Pierwszy zegar atomowy bazujący na drganiu atomów cezu-133, zbudował Louis Essen w roku 1955 w National Physical Laboratory w Anglii.

  17. Układy jednostek miar OBSERWATORIUM  ASTROGEODYNAMICZNE CENTRUM BADAŃ KOSMICZNYCH  PAN Borowiec  ul. Drapałka 4  62-035 Kórnik http://www.cbk.poznan.pl/sluzba_czasu/ogolne.php Laboratorium Czasu i Częstotliwości, we współpracy z Bureau International des Poids et Mesures (BIPM), zaangażowane jest w tworzeniu międzynarodowej skali czasu atomowego TAI i UTC i polskiej skali czasu atomowego TA(PL). Wyposażenie w cztery zegary atomowe i najnowsze systemy dowiązania skal czasu pozwala na utrzymanie wysokiej dokładności pomiaru czasu, z błędem pomiarów czasu 100 pikosekund. Jest to jeden z najlepszych wyników wśród laboratoriów czasu na świecie. Laboratorium Czasu i Częstotliwości wraz z innymi laboratoriami zrzeszonymi w krajowym TA(PL) tworzy Polską Skalę Czasu oraz współuczestniczy w tworzeniu światowego czasu uniwersalnego UTC. Obserwatorium w Borowcu, to jedyna polska placówka, która współtworzy i będzie brała czynny udział w europejskim systemie GALILEO.

  18. Układy jednostek miar

  19. Układy jednostek miar GPS-NAVSTAR (ang. Global Positioning System – NAVigation Signal Timing And Ranging) – system nawigacji satelitarnej obejmujący zasięgiem całą Kulę Ziemską. Zasada działania polega na pomiarze czasu dotarcia sygnału radiowego z satelitów do odbiornika. Znając prędkość fali elektromagnetycznej można obliczyć odległość odbiornika od satelitów. Pomiar aktualnego czasu GPS z dokładnością do jednej milionowej sekundy. System GPS jest utrzymywany i zarządzany przez Departament Obrony USA. Korzystać z jego usług może w zasadzie każdy - wystarczy tylko posiadać odpowiedni odbiornik GPS. Takie odbiorniki są produkowane przez niezależne firmy komercyjne.

  20. Układy jednostek miar System GPS składa się z zestawu 31 (wcześniej 24) satelitów krążących wokół Ziemi po określonych orbitach. System pracuje na obszarze całej Ziemi, bo w każdym punkcie globu widoczne są zawsze przynajmniej cztery satelity. Satelity krążą po orbitach na wysokości około 20183 km nad powierzchnią Ziemi. Jest to orbita niższa od geostacjonarnej

  21. Układy jednostek miar Definicjametra • Metr – jednostka podstawowa długości w układach: SI, MKS, MKSA, MTS • Metr został zdefiniowany 26 marca 1791 roku we Francji w celu ujednolicenia jednostek odległości • 1795 - 1889 długość równa 10-7 długości mierzonej wzdłuż południka paryskiego od równika do bieguna. Na podstawie tej definicji wykonano wzorzec metra. W trakcie powtórnych pomiarów stwierdzono różnice między wzorcem a definicją. 0.02 mm • 1889 - 1960 I Generalna Konferencja Miar (1889) określiła metr jako odległość między odpowiednimi kreskami na wzorcu platynowo - irydowym, równą 0,999914 · 10-7 połowy południka ziemskiego. Wzorzec przechowywany jest w Międzynarodowym Biurze Miar i Wag w Sèvres koło Paryża. 200 nm • 1960 - 1983 XI Generalna Konferencja Miar (1960) zdefiniowała metr jako długość równą 1 650 763,73 długości fali promieniowania w próżni odpowiadającego przejściu między poziomami 2p10 a 5d5 atomu 86Kr (kryptonu 86) 4 nm • 1983 XVII Generalna Konferencja Miar i Wag - mnetr jest to odległość, jaką pokonuje światło w próżni w czasie 1/299 792 458 s. 0.13 nm

  22. Układy jednostek miar Definicjametra

  23. Układy jednostek miar Definicjakilograma Kilogram jest równy masie międzynarodowego prototypu kilograma - walec platynoirydu (Pt-Ir) przechowywany w siedzibie BIPM w Paryżu, Francja. Jednak pomimo przechowywania go w starannie kontrolowanych warunkach, waga oficjalnego kilograma nie jest stała - w ciągu ostatnich stu lat zmieniła się o około 50 mikrogramów. Nowa definicja Określona liczba atomów w pojedynczym, jednokilogramowym krysztale krzemu, który stosunkowo łatwo otrzymać w postaci niezwykle czystych, dużych i niemal doskonałych kryształów. Atomy policzono z dokładnością 2 x 10-8 (liczba AVOGADRO 6,022 x 1023) 

  24. Analiza błędów(niepewności) Pomiarowych Pomiar wielkości fizycznej polega na porównaniu jej z wielkością tego samego rodzaju przyjętą za jednostkę. Liczba otrzymana jako wynik pomiaru zależy od wyboru jednostki (przykład: pomiar długości w cm, m, ft, in itp.). Wynik pomiaru musi więc zawsze składać się z dwóch części: wartości liczbowej oraz jednostki Pomiary wielkości fizycznych dzielimy na bezpośrednie i pośrednie. Niezależnie od metody pomiarów nie możemy nigdy bezwzględnie dokładnie wyznaczyć rzeczywistej wartości wielkości fizycznej. Różnicę pomiędzy wynikiem pomiaru, a rzeczywistą wartością mierzonej wielkości nazywamy błędem pomiaru. Błędy pomiarów dzielimy na grube (omyłki), przypadkowe oraz systematyczne.

  25. Analiza błędów(niepewności) Pomiarowych Błędy grube powstają zwykle na skutek nieuwagi lub niestaranności obserwatora przy odczytywaniu lub zapisywaniu wyników lub w wyniku nagłej zmiany warunków pomiaru (np. wstrząsy). Jeśli mamy serię pomiarów wyniki obarczone błędem grubym są łatwe do wykrycia i usunięcia. Błędy systematyczne wynikają z niedoskonałości przyrządów i metod pomiarowych. Można je redukować stosując bardziej doskonałe i precyzyjne metody i przyrządy, jednak całkowite wyeliminowanie błędów systematycznych jest niemożliwe. Rozpoznane błędy systematyczne należy uwzględniać poprzez wprowadzenie odpowiednich poprawek do wyniku, Błędy przypadkowewystępują zawsze. Wynikają one z różnych przypadkowych i nie dających się uwzględnić czynników (np. wahania temperatury, lub ruch powietrza w pobliżu przyrządu pomiarowego). Inną przyczyną może być niezgodność przyjętego modelu z obiektem mierzonym – np. gdy mamy zmierzyć średnicę pręta, zakładamy milcząco, że jest on idealnym walcem, co nie jest prawdą. O istnieniu błędów przypadkowych świadczy niepowtarzalność wyników pomiaru jednej i tej samej wielkości. Błędy przypadkowe redukuje się poprzez wielokrotne powtarzanie pomiaru – zachodzi wówczas częściowa kompensacja przypadkowych zawyżających i zaniżających odchyłek wyniku.

  26. Analiza błędów(niepewności) Pomiarowych Wykonujemy tylko jeden pomiar – szacujemy błąd na podstawie warunków pomiarowych Wykonujemy serię n pomiarów bezpośrednich wielkości fizycznej X otrzymując wyniki X1, X2 ...Xn. Błąd rzeczywisty dla i-tego pomiaru określa równanie Postulat Gaussa

  27. Prawo Gaussa Carl Friedrich Gauß (Gauss) (1777 - 1855) – niemiecki matematyk, fizyk, astronom i geodeta. Uznawany jest za jednego z twórców geometrii nieeuklidesowej. Gauss jest jednym z największych matematyków, przez sobie współczesnych określany był mianem „Księcia matematyków” (łac. princeps mathematicorum). Zasadnicze (podstawowe) twierdzenie algebry Stopień niezerowego wielomianu zespolonego jest równy sumie krotności jego zespolonych pierwiastków. Jest to równoważne temu, iż każdy wielomian zespolony stopnia można przedstawić w postaci iloczynu: W 1832 r. opracował układ jednostek miar CGS. Na jego cześć jednostkę indukcji magnetycznej nazwano gausem (G lub Gs). W roku 1833 wspólnie z Weberem zbudował pierwszy w Niemczech telegraf elektromagnetyczny.

  28. Prawo Gaussa Rozkład normalny, zwany też rozkładem Gaussa Postulat Gaussa najmniejszych kwadratów

  29. Analiza błędów(niepewności) Pomiarowych Błąd średni kwadratowy (odchylenie standardowe)pojedynczego pomiaru Odchylenie standardowe wartości średniej

  30. Analiza błędów(niepewności) Pomiarowych

  31. Analiza błędów(niepewności) Pomiarowych Wyniki pomiaru zapisujemy zawsze łącznie z niepewnością i jednostką. Niepewność podajemy zawsze z dokładnością do jednej cyfry znaczącej z wyjątkiem sytuacji gdy pierwszą cyfrą znaczącą jest jedynka; wówczas podajemy dwie cyfry znaczące.Liczbę cyfr znaczących wyniku dobieramy tak, aby ostatnia cyfra rezultatu i niepewności należały do tego samego rzędu. Korzystamy na ogół z zapisu z wykorzystaniem symbolu  lub z użyciem nawiasów. Wynik pomiaru wartość pomiaru ± błąd pomiarowy

  32. Podział Fizyki

  33. Podział Fizyki

  34. prędkość średnia z r r1 r2 r Prędkość to pochodna wektora wodzącego r(t) po czasie y x Wektor wodzący – prędkość prędkość chwilowa r (t) pochodna wektora, to suma iloczynów pochodnych jego współrzędnych przez odpowiednie wersory

  35. Inny zapis wektora wodzącego w ruchu jednostajnym Ruch jednostajny Ruch jest jednostajny jeśli wektor prędkości nie zmienia się w czasie

  36. Przyspieszenie Przyspieszenie to pochodna wektora prędkości V(t) po czasie (szybkość zmiany wektora prędkości)

  37. Ruch jest jednostajnie przyśpieszony, jeśli wektor przyspieszenia nie zmienia się w czasie W ruchu jednostajnie przyśpieszonym wektor wodzący zależy od czasu wg. relacji Ruch jednostajne przyspieszony

  38. y v1 r r1 r2 v  v2 x Ruch „jednostajny” po okręgu

  39. y v r  Ruch „jednostajny” po okręgu Wartość przyspieszenia:

  40. Inne przykłady ruchu niejednostajnego Rzut pionowy Spadek swobodny Vp=0 Rzut poziomy Rzut ukośny 

  41. y v   r  r  x Prędkość i przyspieszenie w biegunowym układzie współrzędnych Każdy punkt na płaszczyźnie opisuje para liczb: vr – prędkość radialna v - prędkość transwersalna

  42. Prędkość i przyspieszenie w biegunowym układzie współrzędnych y v   r  r  x

  43. Prędkość i przyspieszenie w biegunowym układzie współrzędnych y v   r  r  x w ruchu po okręgu: rozważmy ruch ciała w obracającym się układzie współrzędnych (np. obracająca się Ziemia) gdzie w - prędkość kątowa układu współrzędnych (w jest stała w czasie)

  44. p ę d c i a ma ), ( p (kg ł a : p – ę d ), m – sa ), v – szyb ko ść ( n n ma (kg za I I s a ł m ), a si e ), d a i ( – d y a m i k i : a p rzysp i sze n e F – (N - i u t o n – sa ) e e i rzysp p zi mski g – sze n i e e ⋅ m v mi r – u ro o krę p e ń g (m m = p ⋅ v m k g ⋅ m Dynamika Transformacja Galileusza Galileusz (Galileo Galilei; 1564 - Pizie, 1642 - Arcetri) – włoski astronom, astrolog, matematyk, fizyk i filozof, twórca podstaw nowożytnej fizyki. Wykładowca matematyki na uniwersytecie w Pizie. Następnie na Uniwersytet w Padwie. Galileusz skonstruował ulepszony mikroskop, temometr, udoskonalił kompas geometryczny i wojskowy, odkrył księżyce Jowisza (Io, Europa, Kallisto, Ganimedesa), odkrył fazy Wenus. Jego bardzo ważnym odkryciem było odkrycie zjawiska bezwładności. s s F m a = 2 s m F = m ⋅ g i ł ę ): s a o t i (N sa ), żk c c ę i i i o a – ś c (c ża r i a ł F – si ł a - n u n ), m ma (kg m g = 10 2 s 2 m F = ś o o n a ł a o i s ł d k n ), ), : m ma (kg szyb ko r d w a F – si (N - i u t o – sa ), v – ść ( d s r

  45. Zasady dynamiki Newtona Pierwsze prawo Newtona Jeżeli na ciało nie działa żadna siła, lub działające siły równoważą się, to ciało pozostaje w spoczynku lub porusza się ze stałą prędkością (ruchem jednostajnym prostoliniowym) Drugie prawo Newtona Całkowita siła działająca na ciało równa jest iloczynowi masy ciała i przyspieszenia. Jeżeli na ciało działa niezrównoważona siła, to ciało porusza się ruchem zmiennym. Masa miarą bezwładności ciała! Trzecie prawo Newtona Gdy dwa ciała oddziałują na siebie, to siła wywierana przez ciało pierwsze na ciało drugie, jest równa co do wartości sile wywieranej przez ciało drugie na pierwsze, lecz ma przeciwny zwrot.

  46. Dynamika Zderzenia nieelastyczne Zderzenia elastyczne V1k V1k m1 m1 V1p V1p V2k V2p V2p m2 m2 V2k pprzed=ppo pprzed=ppo EKprzed= EKpo Układy inercyjne (Galileusza) Układy - nieinercyjne Podstawowe prawa fizyki zachowują niezmienną postać w dwóch układach odniesienia, do których stosuje się transformacja Galileusza Zasada zachowania pędu

  47. Dynamika Siły pozorne (pseudosiły, d'Alemberta) W inercyjnym układzie: Z: a0 - przyspieszenie układu nieinercjalnego, a – przyspieszenie mierzone w układzie nieinercjalnym Siły tarcia Prawa tarcia Coulomba i Morena • Siła tarcia jest niezależna od wielkości powierzchni stykających się ze sobą ciał i zależy jedynie od ich rodzaju. • Wartość siły tarcia dla ciała znajdującego się w spoczynku może zmienić się od zera do granicznej wartości, proporcjonalnej do całkowitego nacisku normalnego. • W przypadku, gdy ciało ślizga się po pewnej powierzchni, siła tarcia jest zawsze skierowana przeciwnie do kierunku ruchu i jest mniejsza od granicznej wartości.

  48. Dynamika B F rA-B F B A dr A Praca

  49. Twierdzenie o pracy i energii. Moc Moc

  50. Dynamika mi ri dm r Ruch obrotowy – zasady dynamiki Newtona Masa miarą bezwładności ciała!?

More Related