510 likes | 855 Views
Repaso de conceptos básicos de matemáticas necesarios para establecer balances. Jesús Carrera IJA Ciencias de La Tierra CSIC. Motivación. Para actuar sobre el territorio es necesario cuantificar. Para ello: Compresión del fenómeno (peculiaridades)
E N D
Repaso de conceptos básicos de matemáticas necesarios para establecer balances Jesús Carrera IJA Ciencias de La Tierra CSIC Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Motivación • Para actuar sobre el territorio es necesario cuantificar. • Para ello: • Compresión del fenómeno (peculiaridades) • Principios generales (Conservación de masa, energía, etc) • Esto se puede hacer de muchas maneras y a muchas escalas. • Escala integrada (cajas) • Distribuida (mecánica de medios continuos, estadística, molecular o cuántica) • El “lenguaje” que se emplea es el de las matemáticas, pero el “dialecto” depende de la escala Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Contenido Niveles de descripción de la naturaleza Balances de masa integrados (cajas) • Ecuaciones diferenciales ordinarias Balances de masa distribuidos en espacio • Campos: definiciones y conceptos básicos • Operadores diferenciales: gradiente y tal • Teoremas integrales: Gauss, Stokes, etc • Ecuaciones diferenciales de balance: conceptos y soluciones Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
La naturaleza se puede describir a muchas escalas P.ej., se puede estudiar la temperatura media de La Tierra haciendo un balance de Energía, con solo conocer el albedo O la de un lago (aquí las interacciones son mas complejas) • Los modelos agregados tratan los sistemas “cajas” y los describen a través de los valores medios de sus “variables de estado”, que reflejan los procesos internos y la interacción con otros sistemas (p.ej, mecánica del sólido rígido, temperatura media de un lago). En ambos casos T(t) Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ejemplo 1: Un lago que recibía un caudal de entrada de 110 L/s con una salinidad (TDS) de 100 mg/L. Del mismo salía un arroyuelo de 10 L/s. Estudiar la salinización del lago al ponerse en marcha un proyecto de regadío. • Como la cartografía es mala, deduce la superficie y volumen históricos del lago a partir de la observación de que se evapora 1 m/año y que el vaso del lago es cónico con pendiente lateral del 1% • Deduce la concentración histórica del lago. • Al ponerse en marcha el regadío, se derivan 70 L/s del lago, de los que 10 vuelven como retorno de regadío, presumiblemente trayendo todas las sales que llevaba el agua de riego. Repite el balance de agua del apartado 1 para deducir la superficie y volumen a que tenderá el lago. • Repite también el balance de sales para calcular el valor al que tenderá la nueva salinidad del lago. • Sorprendido por el resultado del cálculo anterior, Eugenio analiza la situación y se da cuenta que dejarán de salir los 10 L/s del arroyuelo, por lo que te pide que recalcules como evolucionará en el tiempo la salinidad con esta nueva hipótesis. • Sugiere una manera de reducir el impacto del secado del arroyuelo. (El lago es una CAJA) Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
La naturaleza se puede describir a muchas escalas • Los modelos agregados tratan los sistemas “cajas” y los describen a través de los valores medios de sus “variables de estado”, que reflejan los procesos internos y la interacción con otros sistemas (p.ej, mecánica del sólido rígido, temperatura media de un lago). • La mecánica de medios continuos describe el medio mediante variables de estado, definidas sobre el continuo en el Espacio Geométrico Ordinario (EGO) y el tiempo, que se rigen por leyes macroscópicas (p.ej., la Ley de Hooke y la elasticidad, o la de Newton y la mecánica de fluidos) En ambos casos, ahora T(x,t) Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
EJEMPLO 2: Se produce accidentalmente una liberación desastrosa de 1 kg de un gas extremadamente tóxico a una altura de 200 m en un momento en que la velocidad del viento es de 10 km/h y se dan unas condiciones de estabilidad atmosférica de Pasquill tipo B. A una distancia de 2 km a sotavento se encuentra un pueblo. La cuestión es cuál es la concentración máxima que se llegará a alcanzar en el pueblo, cuándo ocurrirá y cuál será la extensión de la zona contaminada. Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Se pueden necesitar escalas mas detalladas sepiensa.org.mx Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
La naturaleza se puede describir a muchas escalas Los modelos agregados tratan los sistemas “cajas” y los describen a través de los valores medios de sus “variables de estado”, que reflejan los procesos internos y la interacción con otros sistemas (p.ej, mecánica del sólido rígido, temperatura media de un lago). La mecánica de medios continuos describe el medio mediante variables de estado, definidas sobre el continuo en el Espacio Geométrico Ordinario (EGO) y el tiempo, que se rigen por leyes macroscópicas (p.ej., la Ley de Hooke y la elasticidad, o la de Newton y la mecánica de fluidos) La mecánica estadística describe el comportamiento de sistemas macroscópicos a partir del de partículas que obedecen leyes de la mecánica clásica (o de la cuántica). Para la agregación se utilizan herramientas estadística. La dinámica molecular estudia sistemas moleculares complejos mediante simulación numérica en la que se permite que átomos y moléculas interactúen bajo las leyes de la física. Se utiliza para estudiar el comportamiento de moléculas con las que no es fácil experimentar. La mecánica cuántica describe el comportamiento de átomos, moléculas y partículas elementales y sus interacciones sobre la base de: cuantización, dualidad onda-partícula y descripción probabilística (inc. ppio de incertidumbre). Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Modelos agregados • El estado del sistema se define por una (o varias) variables de estado, que (normalmente) evolucionan en el tiempo. • Esta evolución está controlada por algún principio de conservación (masa, energía, cantidad de movimiento). Nosotros tenderemos a llamarlo “balance” (de masas o energía). • Al escribir este principio de conservación, suele resultar una Ecuación Diferencial Ordinaria (EDO), que se ha de resolver. Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Planteamiento del Balance de masas escalar Var. Estado: V, C Degradación -lC Q·Ce Q·C • Balance: Var. Almac.= Entradas – Salidas • Permite evaluar la evolución temporal • En estacionario: Entradas = Salidas • Ejemplo • Entradas: Q, Ce • Definición del medio (lago, reactor, rio, …): V, C • Procesos que ocurren en el medio: l • Salidas: Sale con la concentración media • Concentración inicial: C0 • Planteamiento del Balance Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Discusión del planteamiento Var. Estado: V, C Degradación -lC Q·Ce Q·C • Acotar y definir bien el medio suele ser una de las primeras tareas. Su geometría suele tomarse invariante, pero puede variar con el tiempo. • Las entradas suelen ser un dato, aunque, en la realidad, se puede actuar sobre ellas (p.ej.: Reducir Ce) • Tiempo medio de residencia • Procesos • Contienen la “chicha” del fenómeno • Pueden ser complejos Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ejemplo Var. Estado: V, C Degradación -lC Q·Ce Q·C Q = 2 m3/dia Caudal V = 80 m3 Volumen C0=17 g/m3 Conc. Inic l = 0,1 dia-1 Const. Degradación Ce=1000 g/m3 Concentración Entrada Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Solución estacionaria • Imponer derivada temporal nula: • Operar • Despejar C • Sustituir valores (verificar unidades): Var. Estado: V, C Degradación -lC Q·Ce Q·C Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Evolución temporal • Dos posibilidades • Numérica • Analítica • Solución numérica • Inicializar: k=0, C0=Co • k=k+1 • Aproximar derivadas • Evaluar balance • Despejar Ck+1 • Repetir pasos 2-5 hasta acabar • Ventajas: Se puede hacer en hoja Excel, fácil, rápido • Inconvenientes: Ojo a enterarse de qué depende cada cosa y a errores numéricos Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Solución Analítica: EDO’s lineales • Escribir ecuación de forma cómoda , donde y • Resolver ecuación homogénea (hacer b=0) • Variación de las constantes: suponer A=A(t) y sustituir en ec. original • Integrar • Sustituir valores iniciales para calcular B • Sustituir B en la solución Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Separación variables cuando a y b constantes • Escribir ecuación de forma cómoda • Se integra facilmente • La constante de integración A se saca de la condición inicial • Se sustituye A en la solución • El paso 2 puede sustituirse por Que es idéntica a la obtenida en el paso 4 Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ejemplo 1: Balance de agua en la situación inicial E Qe Qs Entradas = Salidas Qe = Qs + E luego E = Qe - Qs = 110 – 10 L/s = 100 L/s Cambio de unidades: E = 100 L/s · 3,15·107 s/año·10-3m3/L = 3,15·106 m3/año La superficie del lago será tal que se puede evaporar este caudal: E = S.e Como la pendiente lateral es del 1%, la profundidad en el centro del lago será de 10 m. Su volumen será: Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ejemplo 1: Balance de sal en la situación inicial Entrada de sal = Salida de sal Qe ·Ce = Qs.C luego E Qe·Ce Qs·C Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ejemplo 1: Nuevo balance de agua tras el regadío QR E Qe. Qr Qs Entradas = Salidas Qe + Qr = E + QR + Qs Es decir E = Qe + Qr – QR – Qs = 110 + 10 – 70 – 10 = 40 L/s E = 40 L/s· 3,15·107 s/año 10-3 m3/año= Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ejemplo 1: Nuevo balance de sales tras Regadío Entradas Qe Ce + Qr Cr Salidas Qs C + QR C Pero como toda la sal retorna, luego Qr·Cr = QR·C Por tanto Qe Ce = Qs C Es decir la concentración del lago no se ve afectada, lo cual es lógico ya que al lago le da igual que la evaporación se produzca en su superficie o en la de regadío. Regadío E C Qe.Ce Qs.C Qr.Cr Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ejemplo 1: Balance de sales sin drenaje Entradas- Salidas = Qe Ce La integración de esta ecuación es trivial: es decir, si no hay salida, la concentración aumenta a un ritmo de 100 al año. El aumento es indefinido hasta que precipiten minerales, cosa que conducirá a la salinización del suelo y, probablemente, al abandono del regadío. Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ejemplo 1: Qué se debe hacer • Para evitar la salinización del lago, lo que se puede hacer es recoger el retorno del regadío mediante drenes y conducirlo a balsas de evaporación. Con ello, disminuye ligeramente el volumen del lago (se pierde el retorno de riego), pero se evita la salinización. Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Balance de masa distribuido • Se hace en cada punto • Se trabaja con campos. • En lugar de derivadas se utilizan operadores diferenciales (grad, div,…) • Se plantean EDP’s • Medios Continuos Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Definiciones: Campo, VER Un campo es una función definida sobre el Espacio Geométrico Ordinario (EGO): d = 1 para campos escalares (ej. temperatura), 3 para campos vectoriales (ej. velocidad), 9 para campos tensoriales (ej. deformación). Es el concepto que se emplea para definir las variables naturales Para las variables que no tienen sentido físico a nivel puntual, entenderemos como valor puntual el límite para volúmenes decrecientes de nuestra: VER: Volumen elemental representativo, V mínimo para que f adopte valor estable Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Coordenadas cartesianas. x representa un punto del espacio. Pero puede visualizarse como un vector que va desde el origen de coordenadas hasta el punto. Está definido por sus componentes o , que son las del vector de posición: Cambio de coordenadas P es una matriz de rotación Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Tensores Definición Las variables que tienen sentido físico como tales (p. ej., velocidad) son independientes del sistema de coordenadas y sus componentes cambian de manera que no se altera la variable al cambiar el sistema de coordenadas. Este tipo de magnitudes se llaman tensores. Ejercicio Mostrar que si v es un vector físico, sus componentes cambian como: Cambio de coordenadas en matrices Supongase en el sistema y en Sustituyendo Resuta Analogamente Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Valores principales. Círculo de Mohr Direcciones principales Las del sistema de coordenadas que hace que la matriz sea diagonal. Se obtienen anulando K12. Ello conduce a una rotación Valores principales Círculo de Mohr Los valores de la diagonal del tensor en los ejes principales: Método gráfico de cálculo de direcciones y valores principales Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Campo escalar Definición Función escalar definida sobre el EGO: Ejemplos Temperatura, presiones, viscosidad, etc Visualización Depende de la dimensión del EGO. 1-D: f vs x 2 ó 3-D curvas o superficies de igual valor del campo: curvas de nivel, isopiezas, isotermas, isobaras, etc. Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Campo Vectorial Definición Función vectorial definida sobre el EGO: Visualización Casi solo en 2D. • mediante flechas de longitud (grosor, color) proporcional al módulo del vector y orientadas según su dirección • mediante las líneas de corriente, tangentes al campo en cada punto. En fluidos se emplean también las trayectorias y líneas de traza. Ejemplos Campos de flujo, velocidad, fuerza, etc Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Campo Tensorial Definición Función tensorial definida sobre el EGO: Visualización Difícil Mediante elipses orientadas según las direcciones principales y de semiejes iguales a la raíz de los valores principales Ejemplos conductividad hidráulica, dispersión, tensiones o deformaciones Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Gradiente Definición Operador vectorial que actúa sobre un campo escalar (un operador vectorial es aquel cuyo resultado es un campo vectorial) y viene dado por: Propiedades Ejemplo Su dirección es la de máxima pendiente (la de máxima variación del campo), su módulo es la variación de por unidad de longitud. Cumple: Perpendicular a las isolineas de h Orientado en el sentido creciente de las isolineas Tanto mayor cuanto mayor cuanto más juntas estén las isolineas. Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Divergencia x2 2 1 x1 1 2 3 -1 Definición Operador escalar que actúa sobre un campo vectorial, dado por: Ejemplo Propiedades Si f representa un flujo de materia, sus derivadas indican cómo varía el flujo de materia por unidad de longitud en cada dirección coordenada. Por ello, la divergencia es la variación de materia almacenada (o diferencia entre salidas y entradas) por unidad de volumen. Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Rotacional x2 2 1 x1 1 2 3 -1 Definición El rotacional es un operador vectorial definido sobre campos vectoriales. Viene definido por el “producto” vectorial entre el operador nabla y el campo vectorial: Ejemplo Propiedades Indica la tendencia (local) a rotar del campo. Es decir, es un campo igual al aumento lateral del campo original por unidad de longitud. Se orienta, según la regla de la mano derecha. El gradiente de un campo es irrotacional: Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Laplaciano Definición Es un operador escalar definido sobre un campo escalar. Viene dado por la divergencia del gradiente Propiedades Da una idea de la curvatura del campo. También existe el Laplaciano de un campo vectorial, definido como el gradiente de la divergencia. Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Operadores tensoriales: Jacobiano, Hessiano Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Flujo. Teorema de la divergencia Flujo G W f cantidad por unidad de superficie f·n cantidad por unidad de superficie de G Flujo de f a través de G: Cantidad total que pasa (entradas-salidas) n f Teorema de la divergencia Da sentido a la divergencia Se emplea mucho para establecer balances Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Identidades de Green Primera Identidad de Green Es la versión vectorial de la fórmula de integración por partes. Se deduce del teorema de la divergenciatomando. Hay que tener en cuenta, además, que: , con ello resulta: Segunda Identidad de Green Se toma un campo escalar y tal que, entonces la primera identidad quedaría como: Si se intercambian y y el resultado se resta de la anterior, resulta la segunda identidad de Green: Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Circulación. Teoremas de Stokes y de Green Circulación circulación de un campo vectorial a lo largo de una curva es la integral del mismo sobre dicha curva L G tf Teorema de Green Teorema de Stokes Versión 2-D del Teorema de Stokes Dada una superficie de borde L, la circulación de un campo a lo largo del borde es igual al flujo del rotacional del campo a traves de la superficie Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
EDP’s de primer orden: Acumulación EDP El balance de u en un volumen a con un término de acumulación f viene dado por: Integración La integración es trivial por separación Si a y f son constantes queda: Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
EDP’s de primer orden: Degradación Vel. degrad. b 1 u EDP La degradación de materia orgánica (u) puede estar limitada por la propia concentración, u, o por la disponibilidad de aceptadores de electrones. En el primer caso, el balance de materia orgánica en un volumen a es (l=b/a): Integración La integración es trivial por separación: Integrando, queda: Imponiendo condiciones iniciales: Si l es constante (1/l es lavida media): Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
EDO’s de primer orden lineales Integración Se integra primero la homogénea (f=0), tomando la constante de integración como variable Sustituyendo en la ecuación original y simplificando: Integrando de nuevo: Imponiendo condiciones iniciales para determinar D: donde es la solución estacionaria. u t EDO Si las entradas netas (entradas menos salidas) por unidad de volumen son a y existe degradación con constante l, el balance es: Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
El término advectivo. Ecuaciones hiperbólicas Coefs. ctes. vt Si q y a son constantes y hacemos v=q/a, y desarrollamos la derivada, queda: Con Si esta ecuación define la trayectoria ( ) La ecuación queda: Cuya solución es: O Coefs. variables conduce a EDP Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
El término difusivo. Ecuaciones parabólicas Ecuación de difusión Adimensionalización Gobierna la difusión de solutos y gases, la conducción de calor, etc: Donde L es una long. característica. Sustituyendo, queda: Esto es importante, porque pone de manifiesto que la solución solo depende de xD y tD. En particular, el estacionario, si lo hay, suele alcanzarse para tiempos del orden de tD=1 (t = aL2/D es el tiempo característico del fenómeno modelado). Ver siguiente transp. Transf de Boltzman Haciendo el cambio: la ecuación queda Es decir, la EDP se transforma en EDO, lo cual es útil para resolverla (es un truco habitual) Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Ec.parabólicas. Cambio instant en contorno Solución Por separación de variables tD=0.3 tD=0.4 tD=0.8 esfera cilindro tD=0.1 placa tD=0.1 tD=0.1 tD=.01 tD=.01 tD=.01 Problema Conducción de calor entre dos placas paralelas separadas una distancia 2L. Inicialmente la concentración es 0 y los extremos se ponen a temp.u0. u/ u0 Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC x/L
Ec.parabólicas. Solución para pulso instant. Problema Difusión, en medio infinito de una masa M. Solución Campana de Gauss de área M/a y desviación tipo Para dimensiones n=1, 2 ó 3 La conc. max. Se reduce propordinalmente a Si , Es decir, Empieza a enterarse para tD=0,1 Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Transporte de un pulso instantaneo tras acumulación Tras degradación Tras advección Tras dispersión Condición inicial Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC
Solución para inyección puntual continua • Despreciando dispersión longitudinal (gradiente pequeño) Tema 1. Repaso Mates. Ingeniería Geoambiental. Ing. Geológica. ETSI Caminos, UPC