1 / 3

A chruthú leis an ionduchtú go bhfuil (1 + x) n ≥ 1 + nx for x > -1, n  N

A chruthú leis an ionduchtú go bhfuil (1 + x) n ≥ 1 + nx for x > -1, n  N. NB x>-1. Dá réir sin (1+x)>0. Cruthaigh go bhfuil sé fíor i gcás n = 1. n = 1 (1 + x) 1 = 1 + x. Is fíor é i gcás n = 1. Glac leis gur fíor é i gcás n = k Dá bhrí sin (1 + x) k ≥ 1 + kx.

alaina
Download Presentation

A chruthú leis an ionduchtú go bhfuil (1 + x) n ≥ 1 + nx for x > -1, n  N

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A chruthú leis an ionduchtú go bhfuil (1 + x)n ≥ 1 + nx for x > -1, n  N NB x>-1. Dá réir sin (1+x)>0. Cóipcheart Foireann Fhorbartha Thionscadal Mata 2012

  2. Cruthaigh go bhfuil sé fíor i gcás n = 1 n = 1 (1 + x)1 = 1 + x Is fíor é i gcás n = 1 Glac leis gur fíor é i gcás n = k Dá bhrí sin (1 + x)k ≥ 1 + kx Cóipcheart Foireann Fhorbartha Thionscadal Mata 2012

  3. Glac leis gur fíor é i gcás n = k + 1 Iolraigh an Dá Thaobh faoi 1 + x (1 + x)(1 + x)k ≥ (1 + x)(1 + kx) (1 + x)k+1 ≥ 1 + kx + x + kx2 Mura bhuil (1 + x)k+1 ≥ 1 + kx + x + kx2 (k > 0 → kx2 ≥0 do gac x) Dá bhrí sin (1 + x)k+1 ≥ 1 + kx + x (1 + x)k+1 ≥ 1 + (k+1)x Má tá sé fíor i gcás n = k, tugann sé sin le fios gur fíor é i gcás n = k + 1 Dá réir sin leis an Ionduchtú (1 + x)n ≥ 1 + nx x > -1, n  N. Cóipcheart Foireann Fhorbartha Thionscadal Mata 2012

More Related