1 / 41

Reaktortechnikai alapok

Reaktortechnikai alapok. Baranyai László 2014. márc. 18. BIM jegyzet: 253-254. 325-335. Ideális bioreaktorok. tökéletesen kevert reaktorok: bennük minden folyadékelem a reaktor valamennyi pontján azonos sem anyag-, sem hőgradiens nem figyelhető meg szakaszos (STR) folytonos (CSTR).

aleda
Download Presentation

Reaktortechnikai alapok

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reaktortechnikai alapok Baranyai László 2014. márc. 18. BIM jegyzet: 253-254. 325-335.

  2. Ideális bioreaktorok • tökéletesen kevert reaktorok: bennük minden folyadékelem a reaktor valamennyi pontján azonos • sem anyag-, sem hőgradiens nem figyelhető meg • szakaszos (STR) • folytonos (CSTR)

  3. Ideális bioreaktorok • dugóáramú reaktorok (PFR): a folyadékelemek a szomszédos elemekkel anyag- és hőkicserélődéstől mentesen haladnak végig a reaktor hosszán • elemi szakaszos reaktorok végighaladása a reaktoron

  4. Tartózkodási-idő eloszlás Folytonos fermentáció A reaktorba belépő folyadékelemnek hármas esélye van: • egyből kilép a reaktorból • végtelen ideig bent marad a reaktorban • valamilyen határozott ideig tartózkodik bent Ezen tartózkodási időket a tartózkodási idő-eloszlással jellemezhetjük. (RTD Residence Time Distribution)

  5. Levezetés adott anyag mennyisége zéró időpontban: m0 megfigyelés időpontjában: m D: hígítási sebesség t és t+dt idő alatt dm távozik a rendszerből t és t+dt közé eső tartózkodási idejű anyaghányad

  6. Levezetés

  7. Levezetés

  8. Levezetés Az anyaghányad, melynek tartózkodási ideje t1 és t2 közé esik: F-függvény: tartózkodási idő eloszlásfüggvénye

  9. E- és F- függvények kapcsolata E-függvény: tartózkodási idő-eloszlás sűrűségfüggvénye folyadékhányad, amely t1-ig elhagyja a rendszert folyadékhányad, mely t1 után hagyja el a rendszert

  10. Eloszlásfüggvény • 0 és t közötti tartózkodási idejű anyaghányad • t és  közötti tartózkodási idejű anyaghányad • 0 és  közötti tartózkodási idejű anyaghányad

  11. Sűrűségfüggvény E-függvény: tartózkodási idő-eloszlás sűrűségfüggvénye

  12. Eltérések az ideális viselkedéstől • folyadékelemek csatornákon történő áramlása • stagnáló, nem kevert régiók jelenléte • visszakeveredés Az E-és F-függvény alkalmas a reaktorban történő nem ideális áramlási viszonyok jellemzésére. Tracer technikával az E- és F-függvény is kísérletesen meghatározható.

  13. Tracer technika • zavarást végzünk a bemenő anyagáramban • vizsgáljuk a rendszer válaszát • nyomjelző anyag hozzáadása: • egységugrás-zavarás c/c0 A tracer koncentrációját pillanat- szerűen c-ről c0-ra változtatjuk, majd ezen az értéken tartva, a reaktorból kilépő áramban mérjük a c koncentrációt. ideális egységugrás c/c0 - t ábrázolása: F-görbe

  14. Tracer technika • nyomjelző anyag hozzáadása: • impulzuszavarás A mért koncentrációértékek normalizálásával a C-görbét nyerjük. ideális impulzuszavarás függvényértékek minden időpontra:

  15. F, C és E görbék kapcsolata • ha a be- és kilépő pontokon nincs visszakaveredés • Az impulzuszavarásra adott normalizált válaszfüggvény megadja a tartózkodási idő-eloszlás sűrűségfüggvényét • kétféle tracer technika közötti kapcsolat: • Egy kísérletileg meghatározott F(t) függvény deriválásával megkapjuk a tartózkodási idő-eloszlás sűrűségfüggvényét

  16. Átlagos tartózkodási idő kemosztátnál: V állandó térfogat f térfogatáram A reaktorok két szélső ideális esetére, az ún. dugóárammal (PFR) jellemezhető reaktorra és a tökéletesen kevert (CSTR) reaktorra a következő ábrán látható grafikus képek nyerhetők.

  17. PFR CSTR

  18. Átlagos tartózkodási idő • Egy eloszlás várható értékét a középértékfüggvény, vagyis az eloszlásfüggvény első momentuma adja meg, ez az átlagos tartózkodási idő: • A görbék kísérletes meghatározása esetén diszkrét pontok sorozatát kapjuk, ekkor az átlagos tartózkodási idő:

  19. Eloszlás szórásnégyzete • második momentum segítségével számolható: • diszkrét pontok sorozatára:

  20. Tartózkodási idő eloszlás alkalmazása • hasznos információk egy reaktorról és annak keveredési viszonyairól • E és F függvények felhasználása az ideális viselkedéstől való eltérés mértékének becslésére • az ideális viszonyoktól való eltérések okai gyakran a kimért görbék szemrevételezésével is megállapíthatóak

  21. Mikro- és makrofluidumok • mikrofluidumok: • szabadon keveredő egyedi molekulák • a tökéletes keveredés makro és mikro szinten is megvalósulhat • makrofluidumok • viselkedés ~ 1012-1018 molekulát tartalmazó csomagok • ezek egymással még kevert reaktorban sem keverednek tökéletesen • a mikrokeveredés változatos esetei két szélső eset között jelenhetnek meg: • teljes keveredés • teljes szegregáció az RTD erről nem nyújt információt

  22. Teljes szegregáció • egymástól független fluidumcsomagok ~ sok szakaszos reaktor egy folytonos áramban • egy rendszer i-edik komponensének koncentrációja a t időpontban cib(t) egy adott szakaszos reaktorban, amelynek kiindulási összetétele ugyanaz mint a vizsgálni kívánt folytonos reaktoré • folytonos esetbenE(t)dt jelenti a kifolyóban megjelenő fluidum-elemeknek azt a hányadát, amelynek tartózkodási ideje t volt így ezekben cib(t) lesz az i-edik anyag koncentrációja • mindezen fluidumelemeknek koncentrációit összeadva kapjuk meg a folytonos reaktorból távozó fluidumban az i anyag koncentrációját:

  23. Nem ideális dugóáram • ideális dugóáram • a szomszédos folyadékelemekkel nincs cserélődés • valóság • fluidumelemek cserélődése • nem egyenletes áramlási vonal, eltérő sebesség • visszakeveredés/axiális diszperzió

  24. Diszperziós modell • nem ideális eset leírásának lehetőségei • diszperziós modell • sorbakapcsolt tökéletesen kevert reaktorok modellezése Fick-törvény a molekuláris diffúzióra axiális diszperzióra : diffúziós állandó : axiális diffúziós koefficiens

  25. Diszperziós modell dimenziómentes hely dimenziómentes idő • modell felírása dimenziómentes formában: • ideális dugóáram esetén így • az új diszperziós modell a tökéletes dugóáramhoz hozzáveszi a diszperzió okozta torzulást helykoordináta csőhossz átlagsebesség

  26. Diszperziós modell kondukció konvekció csőreaktorreaktor diszperziós száma axiális Peclet-szám • diszperziós/Peclet-szám minősíti a diszperzió fokát: a visszakeveredés mértéke nagyon nagy ~ CSTR a visszakeveredés elhanyagolható, ideális dugóáram

  27. Kicsi D/uL (nagy Pe-szám) esete • Pe > 100, 1/Pe < 0,01 • a diszperziós modellből adódó C függvény: • Gauss-féle, normáleloszlás-függvénycsalád középérték szórásnégyzet

  28. Nagy D/uL (kis Pe-szám) esete • Pe < 0,01, 1/Pe > 100 • középérték: változatlan • szórásnégyzet: • a görbesereg nem szimmetrikus

  29. Keveredési viszonyok, C-görbe

  30. Keveredési viszonyok, F-görbe

  31. Ideális reaktorkaszkád-modell • dugóáramú viselkedés közelítése sorba kapcsolt kevert reaktorokkal • mindig használható, ha • a diszperziós modell is használható • nem vagyunk túl távol az ideális dugóáramtól • egy N tartályból álló kaszkádra a dimenziómentes idő valamint az i-edik tartályra

  32. Ideális reaktorkaszkád-modell • a t=0 időpntban impulzus szerűen nyomjelző injektálása az 1. reaktorba • a nyomjelző koncentrációja egyenletes eloszlás után C0 • a nyomjelző anyag kimenő koncetrációja C1 • az anyagmérleg bármely időpontban: tracer eltűnésének sebessége = bemenet - kimenet N=1

  33. Ideális reaktorkaszkád-modell

  34. Ideális reaktorkaszkád-modell • a második reaktorra: • integrálás után:

  35. Ideális reaktorkaszkád-modell • N darab reaktorra, melyek összes térfogata VR=NVi

  36. E-görbe • N növekedésével a reaktorkaszkád egyre inkább megközelíti a dugóáramú viselkedést

  37. Ideális reaktorkaszkád-modell • azonos térfogatú reaktorok esetén a teljes rendszer sűrűség-függvényét az egyes reaktorok sűrűségfüggvényének N-edik hatványa adja meg: • eltérő térfogatok esetén az egyes elemek szorzatát kell képezni

  38. Diszperziós modell és reakció • ha egy diszperziós modellel jellemezhető reaktorban (bio)kémiai reakció játszódik le, annak áramlási és keveredési viszonyokra gyakorolt hatását is figyelembe kell venni • elsőrendű kinetikájú reakció esetén (pl. hőpusztulás): ahol Damköhler-szám

  39. Diszperziós modell és reakció • ha a dugóáramhoz eléggé közeli viszonyok jellemzik a reaktort, az összefüggés egyszerűbb alakra hozható: • ideális dugóáram esetén:

  40. Kérdések • melyek az ideális bioreaktorok típusai, mi jellemzi őket? • E és F függvények jelentése • hogyan határozzuk meg az E és F függvényeket? • mire lehet felhasználni az E és F görbéket? • mi az átlagos tartózkodási idő? • E és F görbék lefutása ideális esetben • mit nevezünk mikro-ill makrofluidumnak? • mi a mikro- ill. makrokeveredés? • milyen modellekkel lehet leírni a nem ideális dugóáramot? • miről nyújt információt a diszperziós/Peclet szám? • ideális reaktorkaszkád modell értelmezése

More Related