1 / 37

CONCEITOS GERAIS

CONCEITOS GERAIS. TOPOGRAFIA Definição :. a palavra "Topografia" deriva das palavras gregas "topos" (lugar) e "graphen" (descrever), o que significa, a descrição exata e minuciosa de um lugar. Importância :.

Download Presentation

CONCEITOS GERAIS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CONCEITOS GERAIS

  2. TOPOGRAFIA Definição: a palavra "Topografia" deriva das palavras gregas "topos" (lugar) e "graphen" (descrever), o que significa, a descrição exata e minuciosa de um lugar. Importância: ela é a base de qualquer projetoe de qualquer obra realizada por engenheiros ou arquitetos.

  3. PLANIMETRIA OU PLACOMETRIA ALTIMETRIA OU HIPSOMETRIA TOPOMETRIA TOPOLOGIA OU GEOMORFOGENIA TOPOGRAFIA TAQUEOMETRIA TERRESTRE OU FOTOGRAFIA AÉREA OU AEROFOTOGRAMETRIA FOTOGRAMETRIA GONIOMETRIA

  4. TOPOMETRIA: A Topometria trata de medidas das grandezas lineares e angulares que definem a posição dos pontos topográficos, tanto nos planos horizontais e/ou verticais. A – Planimetria: Na Planimetria, as medidas, tanto lineares como angulares, são efetuadas em planos horizontais, obtendo-se ângulos e distâncias horizontais, não levando em consideração o relevo. B. - Altimetria: As medidas são efetuadas num plano vertical, onde se obtêm os ângulos azimutais e verticais e as distâncias horizontais e verticais (diferença de nível).

  5. TOPOLOGIA: Os trabalhos da altimetria juntado a planimetria dão origem às plantas planialtimétricas. FOTOGRAMETRIA: A Aerofotogrametria é o método de levantamento utilizado para grandes glebas de Terra. Emprega aparelhagens moderníssimas, e cada vez mais aperfeiçoadas, acopladas em aviões, fornecendo fotografias orientadas da superfície da Terra, que podem ser de dois tipos: eixos verticais e inclinados.

  6. 1.1.3. ERROS EM TOPOGRAFIA a) Naturais: são aqueles ocasionados por fatores ambientais b) Instrumentais: são aqueles ocasionados por defeitos ou imperfeições dos instrumentos ou aparelhos utilizados nas medições. c) Pessoais: são aqueles ocasionados pela falta de cuidado do operador. c.1) catenária: c.2) verticalidade das balizas: c.3) Horizontalidade do diastímetro: c.4) Desvio do alinhamento:

  7. DESENHO TOPOGRÁFICO E ESCALA

  8. O desenho topográfico nada mais é do que a projeção de todas as medidas obtidas no terreno sobre o plano do papel. • Neste desenho, os ângulos são representados em verdadeira grandeza (VG) e as distâncias são reduzidas segundo uma razão constante. "L" = representa qualquer comprimento linear real, medido sobre o terreno. "" = representa um comprimento linear gráfico qualquer, medido sobre o papel, e que correspondente ao comprimento medido sobre o terreno. "M" = é denominado Título ou Módulo da escala e representa o inverso de (/ L).

  9. A escala pode ser apresentada sob a forma de: • - fração : 1/100, 1/2000 etc. ou • proporção : 1:100, 1:2000 etc. • Podemos dizer ainda que a escala é: • - de ampliação : quando  L (Ex.: 2:1) • - natural : quando  = L (Ex.: 1:1) • - de redução : quando  L (Ex.: 1:50)

  10. 2.1 Escala natural A escala natural é quando o desenho for do mesmo tamanho da peça. Teremos a escala assim representadas: 1:1 – (escala um por um) Ex: uns lápis, uma borracha, podem ser desenhados no mesmo tamanho, isto é, escala 1:1 2.2 Escala de redução A escala é de redução quando o desenho de um objeto, por exemplo, uma casa, um armário, um mapa, for feito menor que o tamanho do mesmo. Exemplo: o desenho de uma cadeira terá que ser reduzido para caber no papel. Ex. 1:2, 1:50 . Embora o desenho esteja reduzido as medidas continuam reais.

  11. 2.3 Escala de ampliação A escala é de ampliação quando o objeto real é pequeno, e se deseja desenhar em tamanho maior. Uma peça de relógio, por exemplo: 5:1, 10:1 Desenho - 5:1 - objeto

  12. 2.5. Principais Escalas e suas Aplicações

  13. GRANDEZAS MEDIDAS EM UM LEVANTAMENTO TOPOGRÁFICO

  14. 3.1. Grandezas Angulares São elas: - Ângulo Horizontal (Hz): é medido entre as projeções de dois alinhamentos do terreno, no plano horizontal.

  15. - Ângulo Vertical (): é medido entre um alinhamento do terreno e o plano do horizonte. Pode ser ascendente (+) ou descendente (-), conforme se encontre acima (aclive) ou abaixo (declive) deste plano.

  16. 3.2. Grandezas Lineares São elas: - Distância Horizontal (DH): é a distância medida entre dois pontos, no plano horizontal. - Distância Vertical ou Diferença de Nível (DV ou DN): é a distância medida entre dois pontos, num plano vertical que é perpendicular ao plano horizontal. - Distância Inclinada (DI): é a distância medida entre dois pontos, em planos que seguem a inclinação da superfície do terreno.

  17. UNIDADES DE MEDIDA Em Topografia, são medidas duas espécies de grandezas, as lineares e as angulares, mas, na verdade, outras duas espécies de grandezas são também trabalhadas, as de superfície e as de volume.

  18. 4.1. Unidades de Medida Linear • 1 polegada = 2,75 cm = 0,0275 m • 1 polegada inglesa = 2,54 cm = 0,0254 m • 1 pé = 30,48cm = 0,3048 m • 1 jarda = 91,44cm = 0,9144m • 1 milha brasileira = 2200 m • 1 milha terrestre/inglesa = 1609,31 m 4.2. Unidades de Medida Angular • Para as medidas angulares têm-se a seguinte relação: 360º = 400g = 2π

  19. 4.3. Unidades de Medida de Superfície • 1 are = 100 m2 • 1 acre = 4.046,86 m2 • 1 hectare (ha) = 10.000 m2 • 1 alqueire paulista (menor) = 2,42 ha = 24.200 m2 • 1 alqueire mineiro (geométrico) = 4,84 ha = 48.400 m2 4.4. Unidades de Medida de Volume • litro = 0,001 m3

  20. MEDIÇÃO DE DISTÂNCIAS

  21. 5.1. MÉTODO DE MEDIÇÃO DE DISTÂNCIAS HORIZONTAIS: ♦ - medidas diretas: uma medida é considerada ‘direta’ se o instrumento usado na medida apoiar-se no terreno ao longo do alinhamento, ou seja, se for aplicado no terreno ao longo do alinhamento; ♦ - medidas indiretas: uma medida é considerada ‘indireta’ no caso da obtenção do comprimento de um alinhamento através de medida de outras grandezas com ele relacionada matematicamente; ♦ - medidas eletrônicas: é o caso do comprimento de um alinhamento ser obtido através de instrumento que utilizam o comprimento de onda do espectro eletromagnético ou através de dados emitidos por satélites.

  22. 5.2 DISPOSITIVOS UTILIZADOS NA MEDIÇÃO DE DISTÂNCIAS a) Fita e Trena de Aço

  23. b)Trena de Fibra de Vidro

  24. c) Piquetes e estacas e) Balizas

  25. 5.4. Métodos de Medida com Diastímetros

  26. 5.4.2 Vários Lances - Pontos Visíveis

  27. 5.4.3 Traçado de Perpendiculares b.1)Triângulo Retângulo • Este método consiste em passar por um ponto A, de um alinhamento AB conhecido, uma perpendicular. • Utilizando-se os doze (12) primeiros metros de uma trena, dispõe-se, respectivamente, dos lados 3, 4 e 5 metros de um triângulo retângulo.

  28. Como indicado na figura abaixo, o 0 e 12 metros estariam coincidentes em C, situado a 3 metros do ponto A. O 7 metro (soma dos lados 3 e 4) e representado pelo ponto D, se ajusta facilmente em função dos pontos A e C já marcados

  29. b.2)Triângulo Isósceles • Como indicado na figura abaixo, o 0 e 12 metros estariam coincidentes em C. O 2 m estaria sobre o alinhamento AB à esquerda de C, definindo o ponto D. O 10 metro estaria sobre o alinhamento AB à direita de C, definindo o ponto E. O ponto F, definido pelo 6 metro, se ajusta facilmente em função dos pontos D e E já marcados.

  30. 5.4.4. Transposição de Obstáculos 5.4.4.1 Pontos extremos do alinhamento não intervisíveis Assim, para que a distância AB possa ser determinada, escolhe-se um ponto C qualquer do terreno de onde possam ser avistados os pontos A e B. Medem-se as distâncias CA e CB e, a meio caminho de CA e de CB são marcados os pontos D e E. A distância DE também deve ser medida.

  31. 5.4.4.2 Pontos extremos do alinhamento visíveis A medida de um alinhamento que corta um brejo, um lago, uma lagoa, ou uma depressão ou uma voçoroca exige que se contorne o obstáculo, através de perpendiculares e paralelas obtidas por ângulos retos podem ser demarcadas com corrente e baliza, utilizando-se os processos dos triângulos retângulos ou isósceles

  32. 5.4.2 Erros de aferição da trena onde: lr = comprimento real da linha; c = comprimento da trena é o valor encontrado ao compará-la como uma trena correta; lm = comprimento medido com a trena não aferida; ln = comprimento nominal da trena represento o valor que ele deveria ter.

More Related