140 likes | 290 Views
Two Approaches of Showing Program Equivalence. Borys Bradel. Introduction. Two programs are equivalent if they produce the same effect Try for all possible inputs Too many possibilities Security Direct proof Compute necessary conditions Use a theorem prover. Motivation - Verification.
E N D
Two Approaches of Showing Program Equivalence Borys Bradel
Introduction • Two programs are equivalent if they produce the same effect • Try for all possible inputs • Too many possibilities • Security • Direct proof • Compute necessary conditions • Use a theorem prover
Motivation - Verification • Non-optimizing compilers • Optimizing compilers • Local optimizations • Global optimizations are not verifiable • Still want to verify • Compare to non-optimized
Outline • Background • Hoare Calculus • ACL2 • Methodology • Program Representation • Precondition Computation • Related Work • Conclusion
Hoare Calculus • {P} v:=u {Q} = P Q[v/u] • {P} C1 ; C2 {Q} = {P} C1 {R}, {R} C2 {Q} • {P} if B then C1 else C2 {Q} = {P and B} C1 {Q}, {P and not B} C2 {Q} • wlp(u:=v,Q) = Q[v/u] • wlp(C1 ; C2, Q) = wlp (C1, wlp(C2, Q)) • wlp(if B then C1 else C2, Q) = (B and wlp (C1, Q)) or (not B and wlp (C2, Q)) • y:=2+3 ; x:=5+y {x=10} • y:=2+3 {10=5+y} • {10=5+(2+3)}
ACL2 • Proofs on recursively defined functions • Subset of Common Lisp • Information is stored in books • (defun our-add (x y) (+ x y)) • (defthm our-add-is-commutative (equal (our-add a b) (our-add b a)))
Program Representation Return: r1 Instructions: '((add r1 4 3) (add r3 r1 5) (ble r1 r3 ((add r2 5 4) (add r5 6 5)) ((add r2 6 2) (add r6 6 3))) (add r4 r1 r2))) R1:=4+3 R3:=R1+5 if R1 ≤ R3 F T R2:=5+4 R5:=6+5 R2:=6+2 R6:=6+3 R4:=R1+R2 return R1
Program Representation R1:=4+3 R3:=R1+5 if R1 ≤ R3 func1(A) R1:=4+3 R3:=R1+5 (R2 R1):=func1-branch-2(R3,R1) R4:=R1+R2 return R1 F T R2:=5+4 R5:=6+5 R2:=6+2 R6:=6+3 func1-branch-2(R3,R1) if R1 ≤ R3 then R2:=5+4 R5:=6+5 else R2:=6+2 R6:=6+3 end if return (R2 R1) R4:=R1+R2 return R1 • The program is executable: • (func1 0) 7 • Equivalence is provable: • (defthm program-equivalence • (equal (func1 A) (func2 A)))
R1:=4+3 R3:=R1+5 if R1 ≤ R3 R11:=4+3 R13:=R11+5 if R11 ≤ R13 F F T T R2:=5+4 R5:=6+5 R2:=6+2 R6:=6+3 R12:=5+4 R15:=6+5 R12:=6+2 R16:=6+3 R4:=R1+R2 return R1 R14:=R11+R12 return R11 Precondition Computation
Precondition Computation R1:=4+3 R3:=R1+5 if R1 ≤ R3 R11:=4+3 R13:=R11+5 if R11 ≤ R13 (R1=R11 R1≤R3 R11≤R13) (R1=R11 R1>R3 R11>R13) R1=R11 T,T F,F R2:=5+4 R5:=6+5 R12:=5+4 R15:=6+5 R2:=6+2 R6:=6+3 R12:=6+2 R16:=6+3 R1=R11 R1=R11 R4:=R1+R2 return R1 R14:=R11+R12 return R11 R1=R11
Precondition Computation • Precondition for branches: • (R1=R11 R1≤R3 R11≤R13) (R1=R11 R1>R3 R11>R13) • Precondition for: R3:=R1+5, R13:=R11+5 • (R1=R11 R1≤(R1+5) R11≤(R11+5)) (R1=R11 R1>(R1+5) R11>(R11+5)) • Precondition for R1:=4+3, R11:=4+3 • ((3+4)=(3+4) (3+4)≤((3+4)+5) (3+4)≤((3+4)+5)) ((3+4)=(3+4) (3+4)>((3+4)+5) (3+4)>((3+4)+5)) • (TTT)(TFF) = T
Related Work • Robert van Engelen, David Whalley, and Xin Yuan. "Automatic Validation of Code-Improving Transformations" • George C. Necula, “Translation Validation for an Optimizing Compiler” • Many more, although less so.
Conclusion • A theorem prover is useful for validation • No need to code the entire logic engine • Difficult to incorporate • Validation is slow • Algorithms must be selected carefully
Future Work • Add loop, method, and memory handling • Cannot analyze real programs • Add simplification of constraints • Right now constraints grow too quickly • Automate • Must identify why the proof did not complete • May require new theorems, better use of books