1 / 26

SISTEMAS LINEALES DE INECUACIONES

SISTEMAS LINEALES DE INECUACIONES. Alejandro Camblor Fernández Departamento de Matemáticas IES Rey Pelayo Cangas de Onís. ÍNDICE. Inecuaciones lineales de dos incógnitas ............................ Sistemas de inecuaciones lineales ......................................

allen-bruce
Download Presentation

SISTEMAS LINEALES DE INECUACIONES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SISTEMAS LINEALES DE INECUACIONES Alejandro Camblor Fernández Departamento de Matemáticas IES Rey Pelayo Cangas de Onís

  2. ÍNDICE • Inecuaciones lineales de dos incógnitas ............................ • Sistemas de inecuaciones lineales ...................................... • Problemas textuales • de sistemas de inecuaciones (1º bachillerato) ........... • de programación lineal (2º bachillerato) ..................

  3. 1 / 4 La solución de una inecuación de dos incógnitas es un semiplano. Los pasos a seguir para resolverla son: 1er paso: representar la recta (cambiamos el símbolo por un igual) 2º paso: elegir un punto del plano (que no esté en la recta anterior) y estudiar cómo responde a la inecuación. 3er paso: colorear el semiplano solución. 

  4. 2 / 4 Resuelve la inecuación: Represento la recta: Despejo la variable y: Tabla de valores: Elijo el punto (0,0), que no está en la recta, y estudio cómo responde la inecuación: Como el punto (0,0) RESPONDE BIEN a la inecuación, el semiplano en el que está es la solución. 

  5. 3 / 4 Algunas inecuaciones son sencillas: Si la inecuación tiene una sola variable, la recta es paralela a alguno de los ejes. d b Asocia cada inecuación con su solución c e a 

  6. 4 / 4 Resuelve las inecuaciones: Asocia cada inecuación con su solución d c b a 

  7. 1 / 5 La solución de un sistema de inecuaciones de dos incógnitas es una región(si existe). Los pasos a seguir para resolverla son: 1er paso: representar la recta (cambiamos el símbolo por un igual) 2º paso: elegir un punto del plano (que no esté en la recta anterior) y estudiar cómo responde a la inecuación. 3er paso: colorear el semiplano solución. 

  8. 2 / 5 Resuelve el sistema de inecuaciones: 1er paso: Busco el semiplano solución de la primera inecuación Represento la recta: Despejo la variable y: Tabla de valores: Elijo el punto (2,2), que no está en la recta, y estudio cómo responde la inecuación: Como el punto (2,2) NO RESPONDE BIEN a la inecuación, el semiplano en el que está NO ES LA SOLUCIÓN.

  9. 3 / 5 Resuelve el sistema de inecuaciones: 1er paso: Tengo el semiplano solución de la primera inecuación 2º paso: Busco el semiplano solución de la segunda inecuación Represento la recta: Despejo la variable y: Tabla de valores: Elijo el punto (0,0), que no está en la recta, y estudio cómo responde la inecuación: Como el punto (0,0) NO RESPONDE BIEN a la inecuación, el semiplano en el que está NO ES LA SOLUCIÓN.

  10. 4 / 5 Resuelve el sistema de inecuaciones: 1er paso: Tengo el semiplano solución de la primera inecuación 2º paso: Tengo el semiplano solución de la segunda inecuación 3er paso: Busco la intersección de los dos semiplanos anteriores 

  11. 5 / 5 Resuelve los sistemas de inecuaciones: Asocia cada sistema con su solución d a c b 

  12. 1 / 9 Problemas de texto con inecuaciones Los pasos a seguir para resolverlo son: 1er paso: plantear el sistema de inecuaciones. 2º paso: resolver el sistema dibujando la región solución. 3er paso: resolver el problema, dando la solución con una frase si es posible. 

  13. Tarta Cantidad Azúcar (kg) Huevos (u.) Chocolate x 0’5x 5x Manzana y 1y 6y Disponible 9 60 2 / 9 Para fabricar una tarta de chocolate necesitamos medio kilo de azúcar y 5 huevos; para fabricar la de manzana necesitamos un kilo de azúcar y 6 huevos. Si en total tenemos 60 huevos y 9 kilos de azúcar, ¿qué cantidad de cada tipo de tarta se pueden elaborar? 1er paso:Organizamos los datos en una tabla y hallamos las inecuaciones 2º paso: Busco el semiplano solución de la primera inecuación Represento la recta: Tabla de valores: Despejo la variable y: Elijo el punto (0,0), que no está en la recta, y estudio cómo responde la inecuación: Como el punto (0,0) RESPONDE BIEN a la inecuación, el semiplano en el que está ES LA SOLUCIÓN.

  14. 3 / 9 3er paso: Busco el semiplano solución de la segunda inecuación Represento la recta: Tabla de valores: Despejo la variable y: Elijo el punto (0,0), que no está en la recta, y estudio cómo responde la inecuación: Como el punto (0,0) RESPONDE BIEN a la inecuación, el semiplano en el que está ES LA SOLUCIÓN. 4º paso: Busco los semiplano solución de las últimas inecuaciones

  15. 4 / 9 5º paso: Busco la región solución del sistema como intersección de los semiplanos anteriores La solución del sistema y del problema está representado en esta región. Realmente, sólo valen los valores x e y no decimales (los puntos de intersección de las cuadrículas) 

  16. Asocia cada problema con su solución 5 / 9 Resuelve los problemas: • Una empresa fabrica neveras normales (cada una lleva 3 horas de montaje y 3 de acabado), y neveras de lujo (cada una lleva 3 h de montaje y 6 de acabado). Si en total dispone de 120 h de montaje y 180 h de acabado, ¿cuántas puede fabricar de cada tipo? • Una panadería fabrica dos tipos de bollos: el tipo A tiene 500 g de masa y 250 g de crema; mientras que el tipo B tiene 250 g de masa y 250 g de crema. Si se dispone de 20 kg de masa y 15 kg de crema, ¿cuántos bollos de cada tipo puede elaborar? • Un herrero tiene 80 kg de acero y 120 kg de aluminio para fabricar bicicletas. Las de montaña llevan 2 kg de cada material, mientras que las de paseo llevan 1 kg de acero y 3 kg de aluminio. ¿Cuántas puede fabricar de cada tipo? • ALSA organiza un viaje para al menos 200 personas. Dispone de 5 microbuses de 25 plazas y de 4 autobuses de 50, y sólo tiene 6 conductores. ¿Cuántos vehículos de cada tipo puede utilizar? a b d c 

  17. 6 / 9 Una empresa fabrica neveras normales (cada una lleva 3 horas de montaje y 3 de acabado), y neveras de lujo (cada una lleva 3 h de montaje y 6 de acabado). Si en total dispone de 120 h de montaje y 180 h de acabado, ¿cuántas puede fabricar de cada tipo? Definimos las incógnitas: Planteamos las inecuaciones: Hallamos y representamos los semiplanos solución de cada inecuación, y la región solución del sistema: 

  18. 7 / 9 Una panadería fabrica dos tipos de bollos: el tipo A tiene 500 g de masa y 250 g de crema; mientras que el tipo B tiene 250 g de masa y 250 g de crema. Si se dispone de 20 kg de masa y 15 kg de crema, ¿cuántos bollos de cada tipo puede elaborar? Definimos las incógnitas: Planteamos las inecuaciones: Hallamos y representamos los semiplanos solución de cada inecuación, y la región solución del sistema: 

  19. 8 / 9 Un herrero tiene 80 kg de acero y 120 kg de aluminio para fabricar bicicletas. Las de montaña llevan 2 kg de cada material, mientras que las de paseo llevan 1 kg de acero y 3 kg de aluminio. ¿Cuántas puede fabricar de cada tipo? Definimos las incógnitas: Planteamos las inecuaciones: Hallamos y representamos los semiplanos solución de cada inecuación, y la región solución del sistema: 

  20. 9 / 9 ALSA organiza un viaje para al menos 200 personas. Dispone de 5 microbuses de 25 plazas y de 4 autobuses de 50, y sólo tiene 6 conductores. ¿Cuántos vehículos de cada tipo puede utilizar? Definimos las incógnitas: Planteamos las inecuaciones: Hallamos y representamos los semiplanos solución de cada inecuación, y la región solución del sistema: 

  21. 1 / 6 Problemas de programación lineal Los pasos a seguir para resolverlo son: 1er paso: plantear el sistema de inecuaciones e identificar la función objetivo. 2º paso: resolver el sistema de inecuaciones dibujando la región solución. 3er paso: valorar la función objetivo en los vértices de la región factible y buscar el punto de la región solución que la optimiza. 4º paso: escribir la solución con una frase si es posible. 

  22. Tarta Cantidad Azúcar (kg) Huevos (u.) Chocolate x 0’5x 5x Manzana y 1y 6y Disponible 9 60 2 / 6 Para fabricar una tarta de chocolate necesitamos medio kilo de azúcar y 5 huevos; para fabricar la de manzana necesitamos un kilo de azúcar y 6 huevos. La tarta de chocolate se vende a 12 € y la de manzana a 15 €. Si en total tenemos 60 huevos y 9 kilos de azúcar, ¿qué cantidad de cada tipo de tarta se debe elaborar para que la venta sea máxima? 1er paso:Organizamos los datos en una tabla y hallamos las inecuaciones La función objetivo es la que queremos optimizar. En este caso queremos que la venta sea la mayor posible:

  23. 3 / 6 2º paso: Busco el semiplano solución de la primera inecuación Represento la recta: Tabla de valores: Despejo la variable y: Elijo el punto (0,0), que no está en la recta, y estudio cómo responde la inecuación: Como el punto (0,0) RESPONDE BIEN a la inecuación, el semiplano en el que está ES LA SOLUCIÓN. 3er paso: Busco el semiplano solución de la segunda inecuación Represento la recta: Tabla de valores: Despejo la variable y: Elijo el punto (0,0), que no está en la recta, y estudio cómo responde la inecuación: Como el punto (0,0) RESPONDE BIEN a la inecuación, el semiplano en el que está ES LA SOLUCIÓN.

  24. 4 / 6 4º paso: Busco los semiplano solución de las últimas inecuaciones 5º paso: Busco la región solución del sistema como intersección de los semiplanos anteriores La solución del problema está en esta región. Realmente, sólo valen los valores x e y no decimales (los puntos de intersección de las cuadrículas).

  25. 5 / 6 Se observa que el punto (6,5) es el que maximiza la función objetivo. Recuerda que los valores decimales de x e y no tienen sentido en este problema. SOLUCIÓN: Si se elaboran 6 tartas de chocolatey 5 de manzana, las ventas son mayores y se obtienen 147 €. 

  26. 6 / 6 Resuelve los problemas: • Una empresa fabrica neveras normales (cada una lleva 3 horas de montaje y 3 de acabado), y neveras de lujo (cada una lleva 3 h de montaje y 6 de acabado). Los beneficios son de 180 € en la normal y de 240 en la de lujo. Si en total dispone de 120 h de montaje y 180 h de acabado, ¿cuántas debe fabricar de cada tipo para maximizar el beneficio? • Una panadería fabrica dos tipos de bollos: el tipo A tiene 500 g de masa y 250 g de crema; mientras que el tipo B tiene 250 g de masa y 250 g de crema. Se vende a 1’19 € el tipo A y a 0’89 € el tipo B. Si se dispone de 20 kg de masa y 15 kg de crema, ¿cuántos bollos de cada tipo se deben elaborar para maximizar la venta? • Un herrero tiene 80 kg de acero y 120 kg de aluminio para fabricar bicicletas. Las de montaña llevan 2 kg de cada material, mientras que las de paseo llevan 1 kg de acero y 3 kg de aluminio. La de paseo la vende a 120 € y la de montaña a 90 €. ¿Cuántas debe fabricar de cada tipo? • ALSA organiza un viaje para al menos 200 personas. Dispone de 5 microbuses de 25 plazas y de 4 autobuses de 50, y sólo tiene 6 conductores. El microbús se alquila a 250 € y el autobús a 375 €. ¿Cuántos vehículos de cada tipo debe utilizar? a) 20 neveras normales y 20 de lujo, que reportan de beneficio de 8.400 €. b) 20 bollos tipo A y 40 bollos tipo B, que reportan de beneficio de 59’40 €. c) 20 bicis de paseo y 30 de montaña, que reportan de beneficio de 5.100 €.  d) 2 microbuses y 4 autobuses, que reportan de beneficio de 2.000 €.

More Related