630 likes | 648 Views
This lecture provides an overview of electromagnetic waves and explores uniform plane wave solutions to Maxwell’s equations in both time and frequency domains. The focus is on lossless and lossy mediums, wave phenomena, wave equations, and wave propagation characteristics. The lecture delves into the derivation of wave equations, the relationship between electric and magnetic fields in waves, and the properties of uniform plane waves in different mediums. Key concepts such as wave amplitudes, phases, velocities, and wavelengths are discussed in detail. Additionally, the lecture covers the significance of plane waves in electromagnetics and their applications in understanding wave behaviors.
E N D
Overview of Electrical Engineering Lecture 10: Uniform Plane Wave Solutions to Maxwell’s Equations 1
Lecture 10 Objectives • To study uniform plane wave solutions to Maxwell’s equations: • In the time domain for a lossless medium. • In the frequency domain for a lossy medium. 2
Overview of Waves • A wave is a pattern of values in space that appear to move as time evolves. • A wave is a solution to a wave equation. • Examples of waves include water waves, sound waves, seismic waves, and voltage and current waves on transmission lines. 3
Overview of Waves (Cont’d) • Wave phenomena result from an exchange between two different forms of energy such that the time rate of change in one form leads to a spatial change in the other. • Waves possess • no mass • energy • momentum • velocity 4
Time-Domain Maxwell’s Equations in Differential Form for a Simple Medium 6
Time-Domain Maxwell’s Equations in Differential Form for a Simple, Source-Free, and Lossless Medium 7
Time-Domain Maxwell’s Equations in Differential Form for a Simple, Source-Free, and Lossless Medium • Obviously, there must be a source for the field somewhere. • However, we are looking at the properties of waves in a region far from the source. 8
Derivation of Wave Equations for Electromagnetic Waves in a Simple, Source-Free, Lossless Medium 0 0 9
Wave Equations for Electromagnetic Waves in a Simple, Source-Free, Lossless Medium • The wave equations are not independent. • Usually we solve the electric field wave equation and determine H from E using Faraday’s law. 10
Uniform Plane Wave Solutions in the Time Domain • A uniform plane wave is an electromagnetic wave in which the electric and magnetic fields and the direction of propagation are mutually orthogonal, and their amplitudes and phases are constant over planes perpendicular to the direction of propagation. • Let us examine a possible plane wave solution given by 11
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • The wave equation for this field simplifies to • The general solution to this wave equation is 12
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • The functionsp1(z-vpt) and p2 (z+vpt) represent uniform waves propagating in the +z and -z directions respectively. • Once the electric field has been determined from the wave equation, the magnetic field must follow from Maxwell’s equations. 13
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • The velocity of propagation is determined solely by the medium: • The functions p1 and p2 are determined by the source and the other boundary conditions. 14
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • Here we must have where 15
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • h is the intrinsic impedance of the medium given by • Like the velocity of propagation, the intrinsic impedance is independent of the source and is determined only by the properties of the medium. 16
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • In free space (vacuum): 17
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • Strictly speaking, uniform plane waves can be produced only by sources of infinite extent. • However, point sources create spherical waves. Locally, a spherical wave looks like a plane wave. • Thus, an understanding of plane waves is very important in the study of electromagnetics. 18
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • Assuming that the source is sinusoidal. We have 19
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • The electric and magnetic fields are given by 20
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • The argument of the cosine function is the called the instantaneous phase of the field: 21
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • The speed with which a constant value of instantaneous phase travels is called the phase velocity. For a lossless medium, it is equal to and denoted by the same symbol as the velocity of propagation. 22
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • The distance along the direction of propagation over which the instantaneous phase changes by 2p radians for a fixed value of time is the wavelength. 23
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • The wavelengthis also the distance between every other zero crossing of the sinusoid. Function vs. position at a fixed time l 24
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • Relationship between wavelength and frequency in free space: • Relationship between wavelength and frequency in a material medium: 25
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • b is the phase constant and is given by rad/m 26
Uniform Plane Wave Solutions in the Time Domain (Cont’d) • In free space (vacuum): free space wavenumber (rad/m) 27
Time-Harmonic Analysis • Sinusoidal steady-state (or time-harmonic) analysis is very useful in electrical engineering because an arbitrary waveform can be represented by a superposition of sinusoids of different frequencies using Fourier analysis. • If the waveform is periodic, it can be represented using a Fourier series. • If the waveform is not periodic, it can be represented using a Fourier transform. 28
Time-Harmonic Maxwell’s Equations in Differential Form for a Simple, Source-Free, Possibly Lossy Medium 29
Derivation of Helmholtz Equations for Electromagnetic Waves in a Simple, Source-Free, Possibly Lossy Medium 0 0 30
Helmholtz Equations for Electromagnetic Waves in a Simple, Source-Free, Possibly Lossy Medium • The Helmholtz equations are not independent. • Usually we solve the electric field equation and determine H from E using Faraday’s law. 31
Uniform Plane Wave Solutions in the Frequency Domain • Assuming a plane wave solution of the form • The Helmholtz equation simplifies to 32
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • The propagation constant is a complex number that can be written as attenuation constant (Np/m) phase constant (rad/m) (m-1) 33
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • a is the attenuation constant and has units of nepers per meter (Np/m). • b is the phase constant and has units of radians per meter (rad/m). • Note that in general for a lossy medium 34
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • The general solution to this wave equation is • wave traveling in the -z-direction • wave traveling in the +z-direction 35
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • Converting the phasor representation of E back into the time domain, we have • We have assumed that C1 and C2 are real. 36
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • The corresponding magnetic field for the uniform plane wave is obtained using Faraday’s law: 37
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • Evaluating H we have 38
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • We note that the intrinsic impedance h is a complex number for lossy media. 39
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • Converting the phasor representation of H back into the time domain, we have 40
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • We note that in a lossy medium, the electric field and the magnetic field are no longer in phase. • The magnetic field lags the electric field by an angle of fh. 41
Note that we have These form a right-handed coordinate system Uniform plane waves are a type of transverse electromagnetic (TEM) wave. Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) 42
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • Relationships between the phasor representations of electric and magnetic fields in uniform plane waves: unit vector in direction of propagation 43
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • Example: • Consider 44
Snapshot of Ex+(z,t) at wt = 0 Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) 45
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • Properties of the wave determined by the source: • amplitude • phase • frequency 46
Uniform Plane Wave Solutions in the Frequency Domain (Cont’d) • Properties of the wave determined by the medium are: • velocity of propagation (vp) • intrinsic impedance (h) • propagation constant constant (g=a+jb) • wavelength (l) • also depend on frequency 47
input signal output signal Dispersion • For a signal (such as a pulse) comprising a band of frequencies, different frequency components propagate with different velocities causing distortion of the signal. This phenomenon is called dispersion. 48
Plane Wave Propagation in Lossy Media • Assume a wave propagating in the +z-direction: • We consider two special cases: • Low-loss dielectric. • Good (but not perfect) conductor. 49
Plane Waves in a Low-Loss Dielectric • A lossy dielectric exhibits loss due to molecular forces that the electric field has to overcome in polarizing the material. • We shall assume that 50