170 likes | 279 Views
Kr á sa , F. Křížek, J. Pietraszko , Y. Sobolev , J. Stanislav, A. Reshet in , P . Tlustý. Test of Electromagnetic Calorimeter modules for HADES, Mainz Sep.2009. purpose : measure the energy resolution of detector modules
E N D
Krása, F. Křížek, J. Pietraszko, Y. Sobolev, J. Stanislav, A. Reshetin, P. Tlustý Test of Electromagnetic Calorimeter modules for HADES, Mainz Sep.2009 • purpose: measure the energy resolution of detector modules • with various configurations in g beam at energy • 0-1500 MeV • test conditionsandsetup • results
Test conditions Beam: - detectors were positioned in the secondary gamma beam with continuous energy distribution from 0 to primary electron beam energy, with intensity exponentially falling with increasing energy - unless stated otherwise, the detectors were hit in the centre of their front side, and the beam proceeded along their longitudinal axis - beam diameter at detector position – 6 mm diameter Trigger: OR of signals from 8 selected scintillators in electron tagger – giving events with 8 known gamma energies in range from 0 to energy of the electron beam 2 days of measurement: Ee- = 855 MeV, Ig = 25 kHz 2) Ee- = 1508 MeV, Ig = 5 kHz
Detector modules Lead glass dimensions: 9.2 x 9.2 x 42 cm EMI9903KB: 1.5” tube from MIRAC (WA98) H1949: 2.5” tube from HADES Tofino
Setup Beam: detectors were positioned in the secondary gamma beam with continuous energy (intensity exponentially falling with increasing energy) Trigger: OR of signals from 8 selected scintillators in electron tagger – giving events with 8 known gamma energies in range from 0 to energy of the electron beam
Setup Left up: test setup Left down: crew Right: detail with detectors, movable table and beam halo (looking in beam direction)
Results • slide No. • Example of ADC spectra for Ee- = 1508 MeV, module No.1 7 • Energy resolution for run Ee- = 855 MeV 8 • Energy resolution for run Ee- = 1508 MeV9 • Energy resolution for run Ee- = 855, 1508 MeV and cosmics • for modules No.1-5 10-14 • Energy resolution as a function of HV 15 • Energy resolution as a function of beam position 16 • Energy resolution as a function of beam intensity 17
Measured g spectra ALL E= 1399MeV E= 1210MeV counts E= 1021MeV E= 831MeV E= 676MeV E= 452MeV E= 261MeV E= 72.1MeV ADC channel Ee=1508 MeV, g energy spread <= 1%, det. module No.1
Resolution vs. Energy Ee= 855 MeV resolution ~ k . 1/sqrt(E)
Resolution vs. Energy Ee= 1508 MeV resolution ~ k . 1/sqrt(E)
Resolution vs. Energy Module No.1 resolution ~ k . 1/sqrt(E) LE: Ee= 855 MeV HE: Ee= 1508 MeV cosmics: cosmicsmuons
Resolution vs. Energy Module No.2 resolution ~ k . 1/sqrt(E) LE: Ee= 855 MeV HE: Ee= 1508 MeV cosmics: cosmicsmuons
Resolution vs. Energy Module No.3 resolution ~ k . 1/sqrt(E) LE: Ee= 855 MeV HE: Ee= 1508 MeV cosmics: cosmicsmuons
Resolution vs. Energy Module No.4 resolution ~ k . 1/sqrt(E) LE: Ee= 855 MeV HE: Ee= 1508 MeV cosmics: cosmicsmuons
Resolution vs. Energy Module No.5 resolution ~ k . 1/sqrt(E) LE: Ee= 855 MeV HE: Ee= 1508 MeV cosmics: cosmicsmuons
Resolution vs. HV Ee= 1508 MeV, module No.1 resolution ~ k . 1/sqrt(E)
Resolution vs. beam position Ee= 855 MeV, module No.1 No.1 No.2 01234 reading only module No.1 reading modules No.1+2
Res. vs. amp. gain and beam intensity Ee= 1508 MeV, module No.5 resolution ~ k . 1/sqrt(E) amplifier saturation a) change of AMP gain – no influence b) decrease of g beam int. from 25kHz to 5kHz – improvement of resolution by 9%