350 likes | 515 Views
Entanglement interpretation of black hole entropy in string theory. Amos Yarom. Ram Brustein. Martin Einhorn. What is entanglement entropy?. What does BH entropy mean?. BH Microstates Entanglement entropy Horizon states. How does it relate to BH entropy?.
E N D
Entanglement interpretation of black hole entropy in string theory Amos Yarom. Ram Brustein. Martin Einhorn.
What is entanglement entropy? What does BH entropy mean? • BH Microstates • Entanglement entropy • Horizon states How does it relate to BH entropy? How does string theory evaluate BH entropy? How are these two methods relate to each other?
All |↓22↓| elements 1 2 Entanglement entropy S=0 S1=Trace (r1lnr1)=ln2 S2=Trace (r2lnr2)=ln2
r0 Black holes f(r0)=0 Coordinate singularity Space-time singularity f(0)=-
r=0 t r=r0 t x “Kruskal” extension
r=0 t r=r0 x x “Kruskal” extension
The vacuum state r=0 t r=r0 x |0
Trin(y’ y’’ rout(y’1,y’’1) = Exp[-SE] DfD2 f(x,0+)=y’(x) f(x,0)=y(x) f(x,0+)=y’(x) f(x,0-)=y’’(x) t f(x,0-)=y’’(x) out y’1 y’’1 Exp[-SE] Df f(x,0+) = y’1(x)y2(x) y’(x) y’’(x) f(x,0-) = y’’1(x)y2(x) x f(x,0+) = y’1(x) f(x,0-) = y’’1(x) Finding rout Kabat & Strassler (1994), R. Brustein, M. Einhorn and A.Y. (2005)
t out y’1 y’’1 Exp[-SE] Df y’1(x) x y’’1(x) f(x,0+) = y’1(x) f(x,0-) = y’’1(x) Finding rin Kabat & Strassler (1994), R. Brustein, M. Einhorn and A.Y. (2005) ’| e-bH|’’ b=T-1=f ’(r0)/4p
t x BTZ BH
What is entanglement entropy? What is entanglement entropy of BH’s How does string theory evaluate BH entropy? How are these two methods relate to each other? Black hole entanglement entropy S.P. de Alwis, N. Ohta, (1995)
? How to relate them?
BH entropy in string theory TBH TFT = SBH = SFT(TBH)
Anti deSitter +BH CFT What is entanglement entropy? What is entanglement entropy of BH’s How does string theory evaluate BH entropy? AdS/CFT How are these two methods relate to each other? S/A 1/R Free theory: l 0 Semiclassical gravity: R>>ls AdS BH Entropy S. S. Gubser, I. R. Klebanov, and A. W. Peet (1996) , T>0 S=A/3 SBH=A/4
? How to relate them?
Dualities R. Brustein, M. Einhorn and A.Y. (2005)
Dualities R. Brustein, M. Einhorn and A.Y. (2005) Tracing Tracing
Dualities R. Brustein, M. Einhorn and A.Y. (2005) =
t q r Explicit construction: BTZ BH Maldacena and Strominger (1998), Marolf and Louko (1998), Maldacena (2003)
AdS/CFT Example: AdS BH AdS BH CFTCFT, T=0 CFT, T>0 |0
Consequences R. Brustein and A.Y. (2003) Area scaling
Area scaling of correlation functions EE = V V E(x) E(y) ddx ddy = V V FE(|x-y|) ddx ddy = D(x) FE(x) dx = D(x) 2g(x) dx = - ∂x(D(x)/xd-1) xd-1 ∂xg(x) dx Geometric term: Operator dependent term D(x)=V V d(xxy) ddx ddy
Geometric term D(x)= V V d(xxy) ddx ddy D(x)= d(xr) ddr ddR ddR V + Ax +O(x2) d(xr) ddr xd-1 +O(xd) D(x)=C1Vxd-1 ± C2 Axd + O(xd+1)
Area scaling of correlation functions EE = V V E(x) E(y) ddx ddy = V1 V2 FE(|x-y|) ddx ddy = D(x) FE(x) dx = D(x) 2g(x) dx = - ∂x(D(x)/xd-1) xd-1 ∂xg(x) dx UV cuttoff at x~1/L ∂ x(D(x)/xd-1) 1/L A D(x)=C1Vxd-1 + C2 Axd + O(xd+1)
Consequences R. Brustein M. Einhorn and A.Y. (in progress) Non unitary evolution
Consequences R. Brustein M. Einhorn and A.Y. (in progress)
Summary • BH entropy is a result of: • Entanglement • Microstates • Counting of states using dual FT’s is consistent with entanglement entropy.
Entanglement entropy Srednicki (1993) S1=S2