420 likes | 726 Views
Entanglement entropy scaling of the XXZ chain. Pochung Chen 陳柏中 National Tsing Hua University, Taiwan 10/14/2013, IWCSE, NTU. Acknowledgement. Collaborators Zhi -Long Xue (NTHU) Ian P. McCulloch (UQ, Australia) Ming-Chiang Chung (NCHU) Miguel Cazalilla (NTHU)
E N D
Entanglement entropy scaling of the XXZ chain Pochung Chen 陳柏中 National TsingHua University, Taiwan 10/14/2013, IWCSE, NTU
Acknowledgement • Collaborators • Zhi-Long Xue (NTHU) • Ian P. McCulloch (UQ, Australia) • Ming-Chiang Chung (NCHU) • Miguel Cazalilla (NTHU) • Chao-Chun Huang (IoP, Sinica) • Sung-Kit Yip (IoP, Sinica) • Reference • J. Stat. Mech. (2013) P10007. (arXiv:1306.5828) • Funding • NSC, NCTS
Outline • Introduction • Entanglement, entropy, area law • Entropy scaling • Conformal field theory • Ferromagnetic point • Spin-1/2 XXZ model • Entanglement entropy scaling • Renyi entropy scaling • Summary
Quantum Entanglement • Partition of the Hilbert space • Product state • Entangled state
Reduced Density Matrix • Partition of the Hilbert space • Start from a pure state • Trace out to get the reduce density matrix • Product state is pure • Entangled state is mixed
Entropy as a Measure of Entanglement • Entanglement entropy=von Neumann entropy • Renyi entropy
Entanglement Area Law • Local Hamiltonian + Gapped ground state • Violation of area law • Logarithmic correction • Fermi surface • Conformal field theory • Permutation symmetry
Entanglement Entropy B B A B A B A
Entanglement Entropy Scaling With Conformal Invariance • Periodic boundary condition (PBC) • Open boundary condition (OBC) • Off-critical spin chain with correlation length ξ P. Calabrese and J. Cardy, JSTAT/2004/P06002
DMRG for Entanglement Entropy Scaling SU(3) Heisenberg model M. Führinger, S. Rachel, R. Thomale, M. Greiter, P. Schmitteckert, Ann. Phys. 17, 922 (2008)
Spin-1/2 XXZ Model Entanglement Entropy Scaling
Case 1: Spin-1/2 XXZ Model • : Neel phase • : Ferromagnetic Ising phase • : Gapless critical XY phase with c=1 • U(1) symmetry • Unique ground state • : Ferromagnetic point • Hamiltonian has enlarged SU(2) symmetry • Infinite degenerate ground state • Particular ground state that is smoothly connected to the ground date in the critical XY phase
Entanglement Entropy Scaling of Spin ½ XXZ Model -0.75 L=200 G. De Chiara, S. Montangero, P. Calabrese, R. Fazio, JSTAT/2006/P03001
Entanglement Entropy Scaling Without Conformal Invariance • Spin chain with random interaction • G. Refael and J. E. Moore, J. Phys. A: Math. Theor. 42 (2009) 504010. • Lipkin-Meshkov-Glick model • José I. Latorre, Román Orús, Enrique Rico, Julien Vidal, Phys. Rev. A 71, 064101 (2005) • Permutation-invariant states (Ferromagnetic point) • Vladislav Popkov, Mario Salerno, PRA 71, 012301 (2005) • Olalla A. Castro-Alvaredo, Benjamin Doyon, JSTAT/2011/P02001 • Olalla A. Castro-Alvaredo, Benjamin Doyon, PRL 108,120401 (2012) • Vincenzo Alba, MasudulHaque, Andreas M Lauchli, JSTAT/2012/P08011 • Olalla A. Castro-Alvaredo, Benjamin Doyon, JSTAT/2013/P02016
Entanglement Scaling of Permutation-Invariant States • Ground state at ferromagnetic point with • Vladislav Popkov, Mario Salerno, PRA 71, 012301 (2005) • Olalla A. Castro-Alvaredo, Benjamin Doyon, JSTAT/2011/P02001d • DMRG: • iDMRG: • Fit to get c(m,L)
Finite-Size Scaling ofGround and Excited States Energies • Finite-size correction of ground state energy • Finite-size correction of excited state energy • Spin-wave velocity
Some Remarks • c(m,L) is a decreasing function of L • c(m,L) is an increasing function of m • True • Be careful about the error cancelation • Crossover behavior is observed in iDMRG • How to measure the ferromagnetic length scale?
Spin-1/2 XXZ Model Renyi Entropy Scaling
How to Measure the Entropy of a Finite System? • Not easy to measure entanglement entropy • Possible to measure Renyi entropy • Possible reconstruct entanglement entropy from Renyi entropy
Renyi Entropy Scaling With Conformal Invariance • Periodic boundary condition (PBC) • Open boundary condition (OBC) • Off-critical spin chain with correlation length ξ
Renyi Entropy Scaling of Permutation-Invariant States • Olalla A. Castro-Alvaredo, Benjamin Doyon, JSTAT/2011/P02001 • CFT: • FM: • Renyi entropy scaling • Calculate • Fit CFT scaling to obtain • Expect that as
Observations • is monotonically decreasing • are monotonically increasing • as
Observations • is monotonically decreasing • first increase to some maximal value at • then decrease monotonically • as • for
How to Determine the CFT? • Use all possible methods to extract c and make sure they are consistent with each other • Entanglement entropy scaling of finite system • Entanglement entropy scaling of infinite system • Finite-size scaling of ground state energy • Finite-size scaling of excited state energy • Energy spectrum from exact diagonalization • May have strong finite-size; finite-truncation effects, especially near ferromagnetic phase • May observe cross-over effects due to ferromagnetic phase
Conformal Invariance v.s.Permutation Symmetry • Case-1: • When ceff from permutation symmetry • When c from CFT • Case-2: • When ceff from permutation symmetry • When c from CFT • When c' from some approximated CFT?
Measuring theFerromagnetic Entanglement • When the critical system is close to the ferromagnetic boundary, the groundstatewavefunction looks "ferromagnetic" at small length scale • It is possible to detect this ferromagnetic length scale and the ferromagnetic scaling via measuring the Renyi entropy of a finite system • Clear signature in iDMRG calculation