260 likes | 450 Views
DC and RF Modeling of CMOS Schottky Diodes. Wenyuan Zhang, Yang Tang and Yan Wang Tsinghua University June 21 st 2019. Outline. Motivation Model Description Parameter Extraction Model Validation Model Scalability Discussion Conclusion. Motivation.
E N D
DC and RF Modeling ofCMOS Schottky Diodes Wenyuan Zhang, Yang Tang and Yan Wang Tsinghua University June 21st 2019
Outline • Motivation • Model Description • Parameter Extraction • Model Validation • Model Scalability • Discussion • Conclusion
Motivation [1] W. Zhang and Y. Wang, International Applied Computational Electromagnetics Society Symposium, p. 1-2 (2017). [2] S. Sankaran and K. K. O, IEEE Electron Device Letters, v. 26, n. 7, p. 492-494 (2005). [3] S. Sankaran et al., IEEE International Solid-State Circuits Conference, p. 202-203, 203a (2009). [4] M. K. Matters-Kammerer et al., IEEE Transactions on Electron Devices, v. 57, n. 5, p. 1063-1068 (2010). [5] E. Seok et al., Symposium on VLSI Circuits, p. 142-143 (2006). [6] R. Han et al., IEEE Journal of Solid-State Circuits, v. 48, n. 10, p. 2296-2308 (2013). • CMOS Schottky diodes • They have attracted great interests in the field of mm-wave and THz detecting and imaging [1]. • A number of researches have been conducted on their structures [2], [3], characterization [4] and circuit applications [5], [6].
Motivation [2] S. Sankaran and K. K. O, IEEE Electron Device Letters, v. 26, n. 7, p. 492-494 (2005). [3] S. Sankaran et al., IEEE International Solid-State Circuits Conference, p. 202-203, 203a (2009). CMOS Schottky diodes: structures
Motivation [5] E. Seok et al., Symposium on VLSI Circuits, p. 142-143 (2006). [6] R. Han et al., IEEE Journal of Solid-State Circuits, v. 48, n. 10, p. 2296-2308 (2013). [7] R. Han et al., IEEE Journal of Solid-State Circuits, v. 46, n. 11, p. 2602-2612 (2011). CMOS Schottky diodes: applications in imaging systems
Motivation [1] W. Zhang and Y. Wang, International Applied Computational Electromagnetics Society Symposium, p. 1-2 (2017). [2] S. Sankaran and K. K. O, IEEE Electron Device Letters, v. 26, n. 7, p. 492-494 (2005). [3] S. Sankaran et al., IEEE International Solid-State Circuits Conference, p. 202-203, 203a (2009). [4] M. K. Matters-Kammerer et al., IEEE Transactions on Electron Devices, v. 57, n. 5, p. 1063-1068 (2010). [5] E. Seok et al., Symposium on VLSI Circuits, p. 142-143 (2006). [6] R. Han et al., IEEE Journal of Solid-State Circuits, v. 48, n. 10, p. 2296-2308 (2013). • CMOS Schottky diodes • They have attracted great interests in the field of millimeter-wave and terahertz detecting and imaging [1]. • A number of researches have been conducted on their structures [2], [3], characterization [4] and circuit applications [5], [6]. • Their modeling is far below expectations and severely limits the development of their circuit applications.
Outline • Motivation • Model Description • Parameter Extraction • Model Validation • Model Scalability • Discussion • Conclusion
Model Description Vj Vs V • DC model • Thermionic emission • Carrier velocity saturation • Tunneling • Complete model
Model Description • RF model • Junction capacitance Cj • Barrier capacitance • Diffusion capacitance • Stray capacitance Cp andstray resistance Rp • Coupling influences between electrodes • Stray inductance Ls • Parasitic interconnect influences
Outline • Motivation • Model Description • Parameter Extraction • Model Validation • Model Scalability • Discussion • Conclusion
Parameter Extraction • DC extraction • 1. Extract Is and n at small forward bias • 2. Extract Rs0, Im, Vm and nm at large forward bias • 3. Extract It and nt at reverse bias
Parameter Extraction • RF extraction • 4. Extract Ls at small forward bias at high frequency • 5. Extract Nd, Vbi and Cp at reverse bias at low frequency • 6. Extract Rp at reverse bias at high frequency
Outline • Motivation • Model Description • Parameter Extraction • Model Validation • Model Scalability • Discussion • Conclusion
Model Validation • Schottky diodes • Fabricated in 65nm and 130nm CMOS • Measured up to 67GHz • Modeling root-mean-square errors < 5%
Model Validation • DC forward characteristics Fig. Measured (red) and modeled (blue) DC characteristics of a single-cell diode in 65nm CMOS, with 0.92μm2Schottky contact area. Results given by Schottky equation (black) are also given. (a) Forward I-V. (b) Forward R-V. (c) Reverse I-V. (d) Reverse R-V.
Model Validation • DC reverse characteristics Fig. Measured (red) and modeled (blue) DC characteristics of a single-cell diode in 65nm CMOS, with 0.92μm2Schottky contact area. Results given by Schottky equation (black) are also given. (a) Forward I-V. (b) Forward R-V. (c) Reverse I-V. (d) Reverse R-V.
Model Validation • RF characteristics Fig. Measured (red) and modeled (blue) RF characteristics of a single-cell diode in 65nm CMOS, with 0.92μm2Schottky contact area. (a) Ctotal=Im(Y)/ω versus bias at different frequencies. (b) Ctotal versus frequency at different biases (from -1.1V to 0.1V, 0.1V step).
Outline • Motivation • Model Description • Parameter Extraction • Model Validation • Model Scalability • Discussion • Conclusion
Model Scalability • Scaling relations • N: the number of diode cells • A: the area of Schottky contact • Cut-off frequencies • ~2THz in 65nm CMOS • ~1THz in 130nm CMOS
Model Scalability • Scalability with the number of diode cells Fig. Model scalability with the number of diode cells in 65nm CMOS. Schottky contact area of a single cell is 0.185μm2.
Model Scalability • Scalability with the area of Schottky contact Fig. Model scalability with the area of Schottky contact in 65nm CMOS. Devices under test are single-cell diodes.
Outline • Motivation • Model Description • Parameter Extraction • Model Validation • Model Scalability • Discussion • Conclusion
Discussion [8] L. F. Feng et al., Appl. Phys. Lett., vol. 101, no. 23, pp. 233506-1–233506-4, Dec. 2012. [9] K. Bansal et al., Appl. Phys. Lett., vol. 105, no. 12, pp. 123503-1–123503-4, Sep. 2014. [10] D. Korucu et al., J. Optoelectron. Adv. Mater., vol. 11, no. 2, pp. 192–196, Feb. 2009. [11] W. Yang et al., Phys. Status Solidi, vol. 11, no. 3–4, pp. 714–717, Apr. 2014. [12] P. Chattopadhyay and D. P. Haldar, Appl. Surf. Sci., vol. 171, no. 3–4, pp. 207–212, Feb. 2001. • On forward capacitance • Abnormal decreasing capacitance with increasing bias • Suggested mechanisms • Capture-emission of carriers by trap levels [8] • Carrier transient response [9] • Carrier polarization [10] • Poole-Frenkel effect [11] • Interface-state effect [12] • We are focusing on the modeling of this behavior
Outline • Motivation • Model Description • Parameter Extraction • Model Validation • Model Scalability • Discussion • Conclusion
Conclusion • A complete DC and RF model of CMOS Schottky diodes and its parameter extraction strategy are (will be) established. • With different current transport mechanisms including thermionic emission, carrier velocity saturation and tunneling together with stray capacitance and inductance taken into account, the model predicts accurate results within 5% error, when evaluated with measurements up to 67GHz in 65nm and 130nm CMOS. • The model is scalable with the number of diode cells and the area of Schottky contact. • The model can be applied in mm-wave circuit design.
Thanks for your attention! Wenyuan Zhang, Yang Tang and Yan Wang Tsinghua University June 21st 2019