1 / 8

Lineer Denklem Çözümü : Gauss Elemesi

Lineer Denklem Çözümü : Gauss Elemesi. Giriş. Mühendisler ve araştırmacılar sıklıkla işlerinde birden fazla denklemi çözmekle uğraşırlar. ax+by+cz=d. Bazen karşılarına lineer denklem sistemleri çıkar. Elastikiyet. Elektrik Devreleri : Kirchhoff Kuralları. Isı Transferi.

arnon
Download Presentation

Lineer Denklem Çözümü : Gauss Elemesi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lineer Denklem Çözümü: Gauss Elemesi

  2. Giriş Mühendisler ve araştırmacılar sıklıkla işlerinde birden fazla denklemi çözmekle uğraşırlar. ax+by+cz=d Bazen karşılarına lineer denklem sistemleri çıkar Elastikiyet Elektrik Devreleri : Kirchhoff Kuralları Isı Transferi

  3. Ancak birçok fiziksel sistem doğasından ötürü non-lineerdir Non-lineer optik Kaos Teorisi Atmosfer olayları Genel Görelilik Bu sebepten dolayı çoğunlukla lineer olmayan sistemle karşılaşırlar.

  4. Lineer Denklem Sistemlerinin Çözümü: Gauss Elemesi Yöntemi Öncelikle lineer denklem çözümünü anlamaya çalışalım Örneğin aşağıdaki denkleme bu yöntemi uygulayalım. a 2x1 + 8x2 + 2x3 = 14 aı x1 + 4x2 + x3 = 7 a denklemi x1 katsayısına bölünür x1 + 6x2 - x3 = 13 b x1 + 6x2 - x3 = 13 b c 2x1 - x2 + 2x3 = 5 c 2x1 - x2 + 2x3 = 5 aı 1*x1 + 1*4x2 + 1*x3 = 1*7 aı denklemi b denkleminin x1 Katsayısı ile çarpılır aı denklemi b denkleminden çıkarılır x1 + 6x2 - x3 = 13 b c 2x1 - x2 + 2x3 = 5 aı x1 + 4x2 + x3 = 7 (1-1) x1 + (6-4) x2 + (-1-1) x3 = (13-7) b böylece b denklemindeki ilk terim elenir c 2x1 - x2 + 2x3 = 5

  5. x1 + 4x2 + x3 = 7 b denklemindeki ilk terim elendikten sonra sıra c denklemine geldi. Şimdide c nin ilk sabiti ile aı denklemini çarpalım. Bu sabit 2 dir. 2x2 - 2x3 = 6 b c 2x1 - x2 + 2x3 = 5 Daha sonra aı denklemini c den çıkaralım. aı 2 * x1 + 2 * 4x2 + 2 * x3 = 2 * 7 2x2 - 2x3 = 6 b c 2x1 - x2 + 2x3 = 5 aı aı x1 + 4x2 + x3 = 7 x1 + 4x2 + x3 = 7 2x2 - 2x3 = 6 2x2 - 2x3 = 6 b b c c -9 x2 = -9 (2-2) x1 + (-1-8) x2 + (2-2) x3 = (5-14)

  6. x1 + 4x2 + x3 = 7 a 2x1 + 8x2 + 2x3 = 14 Denklemimizin son hali böyledir. Artık aı yerine a denklemini yazalım. 2x2 - 2x3 = 6 b 2x2 - 2x3 = 6 b c -9 x2 = -9 c -9 x2 = -9 Şimdiye kadar a denklemini pivot denklem a nın x1 katsayısınıda pivot sabiti kabul ederek b ve c denklemlerindeki x1 in katsayısı elendi. (c deki x3 katsayısıda İstenmeden elendi. Ancak elenmeseydi de bir şey değişmeyecekti.) Buradan devam ederek bu sefer b denklemi pivot denklem kabul edilir ve yukardaki işlemler tekrarlanır a 2x1 + 8x2 + 2x3 = 14 bıdenklemi c denkleminin x2 Katsayısı ile çarpılır 2x2 - 2x3 = 6 b b denklemi x2 katsayısına bölünür bıdenklemi bulunur. c -9 x2 = -9 Bu şeklilde işlemler devam eder. Ancak c denkleminde x3 olmadığı için x2 değeri bellidir.Buradan b denklemindeki x3 un değeri bulunur. Buradan da a denklemindeki x1 İn katsayısı bulunur.

  7. a 2x1 + 8x2 + 2x3 = 14 x1 = 5 2x2 - 2x3 = 6 b x3 = -2 x2 = 1 c -9 x2 = -9 Böylece 3 bilinmeyenli 3 denkleme, gauss eleme yöntemi ile çözüm bulundu.

  8. Ele çözmemiz fazla zamanımızı almadı. Peki denklem ve bilinmeyen sayısı binleri bulan fiziksel bir sistemimiz olsaydı nasıl çözerdik? Örneğin, Çok ilmekli bir elektrik devresi; Böyle bir devreyi çözebilmek için N adet ilmek için N tane denklem yazılabilmelidir. Bundan dolayı bilgisayar yoluyla hesaplama zorunlu olmuştur

More Related